
MASTER THESIS

Task Scheduling Optimization in Cloud
Computing Using Multi-Objective

Evolutionary Algorithms With
User-in-the-Loop

Author:
Ismat Marouf

Supervisor:
Dr. Abdel Salam Sayyad

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Computing

at Birzeit University, Palestine

May 13, 2019

ii

Approved by the thesis committee:

Dr. Abdel Salam Sayyad, Birzeit University

Dr. Radi Jarrar, Birzeit University

Dr. Majdi Mafarja, Birzeit University

Date approved:

iii

Declaration of Authorship
I, Ismat MAROUF, declares that this thesis titled, “Task Scheduling Optimization in Cloud
Computing with User-in-the-Loop” and the work presented in it are my own. I confirm that:

• This work was completely done or mainly while in candidature for a masters degree at
Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iv

Abstract

Cloud Computing platforms provide the supply of computing resources on the basis of de-
mand. The optimization of a task workflow in cloud environments aims at reducing the
overall execution time while consuming the least amount of cloud resources. Choosing a
certain workflow from a number of competing schedule methods for Pareto efficient solu-
tions can be a complex and confusing task for the cloud’s end user. We used two types of
workflow. The first workflow is a balanced structure as Montage, the second workflow is a
CyberShake and the structure is not balanced. Those data types of workflows provided by
CloudSim [15] tool. The User-in-the-Loop (UIL) aims at enabling the user to interact with
and guide the algorithmic search. This study presents a multi-objective improvement with
UIL approach to Cloud Workflow Optimization. In addition to the overall objective of min-
imizing the total execution time, we seek to minimize the runtime for each Virtual Machine
(VM) and minimize the number of VMs utilized in a particular schedule. In comparison
to the existing workflow planning algorithms, we demonstrate the advantage of this study
approach, which allows the decision maker to save on cloud resources without detriment to
the overall runtime. In this study, we utilize jMetal [23] for the wide range of metaheuristic
algorithms that are implemented in it, and CloudSim [15] for its cloud simulation capability.
The goal is to set the tasks workflow and their resources allocation while enabling the user to
interact to focus the search around the user preferences.

The results have shown that the evolutionary algorithms are able to outperform existing
algorithms. The user-in-the-loop process is able to guide the search in order to find the best
optimal solution among alternative solutions available in the search space. The evolutionary
algorithms are able to execute tasks in the cloud environment with a minimum number of
machines, hence, the cost will be reduced too in cloud environments. The evolutionary algo-
rithms are able to balance the executing process of tasks on machines too, which means the
task will be distributed in the cloud with minimum costs of resource on those machines.

�Ê
	

j
�
J�ÖÏ @

�
éK
Pñ¢

�
JË @

�
HAJ
Ó

	PP@ñ
	
mÌ'@ Ð @Y

	
j

�
J�AK.

�
éJ
K. Aj�Ë@

�
éJ.�ñmÌ'@ ú

	
¯ ÐAêÖÏ @

�
éËðYg. ¡J
¢

	
m�

�
'

¡J
¢
	

j
�
JË @

�
èPðX ú

	
¯ ÐY

	
j

�
J�ÖÏ @ ÈA

	
gX@

©Ó

	
¬@Yë

B@

�
èXYª

�
JÓ

	
¬ðQªÓ

�
IÒ�« : X@Y«@

I. Ê£ úÎ« @ZA
	
JK.

�
éºJ.

�
�Ë@ Q�.«

�
éJ.�ñmÌ'@ XP@ñÓ Q�

	
¯ñ

�
K úÍ@

�
éJ
K. Aj�Ë@

�
éJ.�ñmÌ'@

�
é

J�
K.

	
¬Yî

�
E

ZA
�

�
	
� @ úÍ@

�
éJ
K. Aj�Ë@

�
é

J�
J. Ë @ ú

	
¯ AêÊ�Ê�

�
�ð ÐAêÖÏ @ ÉÔ« Q�
�

	á�
�m�
�
'

	
¬YîE
 . 	áK
XPñÖÏ @ ð@

	á�
ÓY
	

j
�
J�ÖÏ @

�
é

J�
J. Ë @ ú

	
¯

�
ékA

�
JÖÏ @ XP@ñÖÏ @ Ð @Y

	
j

�
J�@ ÉJ
Ê

�
®
�
Kð

�
éJ
Ê¾Ë@ ÐAêÖÏ @

	
YJ

	
®

	
J
�
K

�
I

�
¯ð ÉJ
Ê

�
®
�
K úÍ@

	
¬Yî

�
E

�
é¢

	
k

É

KA�ñË@ É

	
�

	
¯@ Ð@Y

	
j

�
J�@ ÈC

	
g 	áÓ

	
¬@YëB@ è

	
Yë

�
�J

�
®m�

�
' úÍ@

�
é�@PYË@

	
¬Yî

�
E .

�
éJ
K. Aj�Ë@

Õç
�
' AÓð øQ

	
kB@

�
HA�@PYË@ úÍ@ Q

	
¢

	
J
�
K

�
é�@PYË@

	
à@ AÒ» ,

�
éJ
ÓP

	P@ñ
	
mÌ'@

�
�Q¢Ë@ð

�
èQ

	
¯ñ

�
JÖÏ @

�
éJ
k. ñÊ

	
Jº

�
JË @

�
éJ
ÊÔ

« ÈC
	

g AîD
Ë @ É�ñ
�
JË @ Õ

�
æK

�
HAg. Q

	
m× É

	
�

	
¯@ úÎ« Èñ�mÌ'@ Ég. @ 	áÓ ÈAj. ÖÏ @ @

	
Yë ú

	
¯ é

�
®J

�
®m�

�
'

XAm.
�'

 @ ú

	
¯ ÐY

	
j

�
J�ÖÏ @ ¼@Qå

�
� @ úÍ@

	
¬Yî

�
E ÐAêÖÏ @

	
YJ

	
®

	
J
�
K

�
éJ
ÊÔ

« ÈC
	

g ÐY
	

j
�
J�ÖÏ @ l .

×X
�
éJ
ÊÔ

« 	
à@ .

�
IjJ. Ë @

úÎ« é
�
KPY

�
¯ð ÐY

	
j

�
J�ÖÏ @

	á�
ºÖ
�
ßð , ÐAêÖÏ @ É�Ê�

�
�

�
IJ
k

	áÓ ÉÔ«Q�
� É
	

�
	
¯AK.

�
ékA

�
JÖÏ @ XP@ñÖÏ @ É

	
�

	
¯@

	
YJ

	
®

	
J
�
K Õ

�
æK
 Õç

�
' 	áÓð ÉÔ« Q�
�

�
é¢

	
k É

	
�

	
¯@ XAm.

�'

 @ ú

	
¯

�
HAJ
Ó

	PP@ñ
	
mÌ'@

�
Im�'

.
�

HBAm.
× éJ
k. ñ

�
JË É«A

	
®
�
JË @

ð@ ÐY
	

j
�
J�ÖÏ @ l .

×Xð
	

¬@Yë

B@ XYª

�
JÓ @Pñ¢

�
�

�
é�@PYË@ è

	
Yë ÐY

�
®
�
K .

�
éJ
K. Aj�Ë@

�
é

J�
J. Ë @ úÎ«

�
é¢

	
mÌ'@ è

	
Yë

	
YJ

	
®

	
J
�
JË @

�
I

�
¯ð ÉJ
Ê

�
®
�
K ñë AJ
«ñJ

�
� Q�

�»

B@

	
¬YêË@

	
à@ .

�
ékQ�

�
�
®ÖÏ @

	
¬@YëB@ è

	
Yë

�
�J

�
®j

�
JË P@Q

�
®Ë @

	
Y

	
j

�
JÓ

AÒ» ,
�
éºJ.

�
�Ë@ úÎ« 	PAêk. É¾Ë ÉJ

	
ª

�
�

�
�Ë @

�
I

�
¯ð ÉJ
Ê

�
®
�
K úÍ@

�
é
	
¯A

	
�BAK. ,

�
éÊ�Ê�

�
�ÖÏ @ ÐAêÒÊË ú

ÍAÔg

.
B

@

�
HAJ
Ó

	PP@ñ
	

k ©Ó
�
é
	
KPA

�
®ÖÏ AK. ÐAêÖÏ @ è

	
Yë

	
YJ

	
®

	
J
�
JË

�
éÓY

	
j

�
J�ÖÏ @

�
è 	Qêk.

@ XY« ÉJ
Ê

�
®
�
K úÍ@

�
é�@PYË@

	
¬Yî

�
E

ø

	
YË@ð ,

�
é�@PYË@ i. î

	
DÓ

�
è
	Q�
Ó PAê

	
£B Õç

'A

�
®ËAK. hQ�

�
�
®ÖÏ @ YK
Ym.

Ì'@ i. î
	

DË @
�
é
	
KPA

�
®Óð

�
é
�
®K. A�

�
HA�@PXð

�
éÖ

ßA

�
¯

. ú

ÍAÔg

.
B

@ ÉJ

	
ª

�
�

�
�Ë @

�
I

�
¯ñK. P@Qå

	
�B

@

	
àðX

�
éK. Aj�Ë@ XP@ñÓ úÎ«

	
 A

	
®mÌ'AK. P@Q

�
®Ë @ ©

	
KA�Ë iÒ��

ii

Acknowledgements
@Qº

�
�

�
éËA�P

.
�

IK

	PQ�
K.

�
éªÓAm.

�'
.

�
éJ
��
PY

�
JË @

�
é

JJ
êË @ Z A

	
�«

@ ©J
Ô

g
.

úÍ@

	
àA

	
Q̄ªË @ð Qº

�
�Ë@ ÉK

	Qm.
�'

. ÐY
�
®
�
J
	
K

¨ðQå
�
�ÖÏ @ @

	
Yë úÎ«

	
¬Qå

�
�ÖÏ @ XAJ
� ÐC�Ë@ YJ.« QK
Y

�
®Ë@ Pñ

�
J»YË@ úÍ@

QK
Y

�
®
�
JË @ð Qº

�
�ËAK. ék. ñ

�
K@ AÒ»

.
�
éªÓB

�
HA

	
¯A

	
�@ð

�
éÒJ

�
¯

�
HA

	
¢kCÓ 	áÓ è@YK.

@ AÖÏð èXñêm.

Ì AÓ@Q
�
�g@

�
ék. PA

	
®Ó ø

Ym.

×ð P@Qk. ú

æ

	
�@P : Pñ

�
J»YË@ 	áÓ É¿

�
é

�
�

�
¯A

	
JÖÏ @

�
é
	
Jm.
Ì úÍ@

Qº

�
�Ë@ ÉK

	Qm.
�'

. ék. ñ
�
J
	
Kð AÒ»

�
éÒJ

�
®Ë @ Ñî

�
D

	
¢kCÓð

�
IjJ. Ë @ @

	
Yë ZAî

	
E @ ú

	
¯ A

	
JË Ñî

�
EY«A�ÖÏ

.
�

IjJ. Ë @ @
	
YêË

�
é
�
®K. A�Ë@ Ég@QÖÏ @ ÈC

	
g

. ©
	

�@ñ
�
JÖÏ @ ¨ðQå

�
�ÖÏ @ @

	
Yë 	PAm.

�
	
' @

ú

	
¯ ÑëA� 	áÓ úÍ@

Ð@Q

�
�gB@ð Qº

�
�Ë@ É¿ð

Z@Yë@

ZAJ
ÊªË@ð ú

�
¯QË @ úÍ@

é
�
JÓ

@ ÈA��
@

ÉJ
�. � ú

	
¯ é�

	
®

	
K I. ëð 	áÓ É¿ úÍ@

è
	
YJ
ÓC

�
K úÍ@

ÕÎªË@ ÈA��
B

éª�ð ú

	
¯ AÓ È

	
YK. ÕÎªÓ É¿ úÍ@

. XAJ
� ÐC�Ë@ YJ.« :
	á�
Ó

B@ Pñ

�
J»YË@ .

.
�

IK

	PQ�
K.

�
éªÓAg. ú

	
¯ ÕÎªË@

�
éK
 @P

�
éÊÔg úÍ@

. è A
	
JÒ

�
J
	
Kð èA

	
J�

	
JÖ

�
ß AÓ

�
�J

�
®m�

�
' ú

	
¯ A

	
KY«A� 	áÓ É¿ úÍ@

. A
	
JK. PX Q�

	
J
�
JË

�
IK. @

	
X ú

�
æË @ ¨ñÒ

�
�Ë@ úÍ@

.
�

HQ�.ª
	
¯ @Qå�k. éJ
«@P

	
X YÓ ø

	
YË@

�
I

	
Jº

	
¯

	
àñ»

@

	
à

@ é

�
KY«ð ø

	
YË@ úÍ@

.Q�
�ÖÏAK. ú

	
æÒêË

@ ø

	
YË@ Õç

' @YË @ ZA¢ªË@ 	QÓP úÍ@

. 	QK

	QªË@ ú

G
.

@.

. AîD

	
JJ
« ú

	
¯

�
ékQ

	
®Ë @

�
IÒ�

�
�P@ð Aî

	
EA

	
�k

@ ú

	
¯

�
èXAª�Ë@

�
HY�m.

�
�
' 	áÓ úÍ@

. ú

	
G A�Ë ÉJ.

�
¯ ú

æ
.
Ê
�
¯ é

	
¯ 	Q« 	ámÌ ùÖÞ�

@ úÍ@

I. Ê

�
¯ úÎ

	
«

@ð 	ák

@ úÍ@

. Ð @YÖÏ @ YîD
�
� Aî

	
EA

	
Jk 	áÓ ú

	
æ
�
J
�
®�ð ,

�
@YJ
Ëð ú

	
æ
�
JK. P

	áÓ úÍ@

.
�
éJ. �
J. m

Ì'@ ú

×

@

.
�
èAJ
k B Aî

	
EðYK. ð

�
èAJ
m

Ì'@ úÍ@

ú
	
¯ @YË@

�
èAJ
m

Ì'@ ¨ñJ.
	
�K
 úÍ@

.
�
éJ. �
J. m

Ì'@ ú

�
æk. ð 	P

ú

�
æË @ Ñî

�
DËA�P

�
éªK. A

�
JÓ ú

	
¯ Ñî

	
D

	
£ 	á�k Y

	
J«

	
àñº

	
K

	
à

@ ÑëYª

	
Kð A

	
J
	
K A

	
J
�
JÓ@ ð A

	
KQº

�
� ÐY

�
®

	
K AªJ
Ô

g
.

ÑîD
Ë @

. Aëð

ðYK.

iii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Proposed Solution . 2
1.3 Impact of the proposed solution . 3
1.4 Research Questions . 3
1.5 Organization of this document . 4

2 Background and Related Work 5
2.1 Cloud Computing . 5
2.2 Traditional Scheduling Algorithms . 5
2.3 Genetic Algorithm . 8

2.3.1 Selection . 9
2.3.2 Crossover operation . 9
2.3.3 Mutation operator . 10

2.4 Multi-Objective Optimization . 10
2.4.1 Search and Decision Making . 11
2.4.2 Quality Indicators . 12

2.5 Interactive Optimization . 14
2.6 Exploration and Exploitation . 14
2.7 Multi-Objective Evolutionary Algorithms (MOEAs) 14

2.7.1 Multi-Objective Cellular genetic algorithm (MOCell) 15
2.7.2 Indicator-Based Evolutionary Algorithm (IBEA) 16
2.7.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 17

2.8 Related Work . 17
2.8.1 Cloud Workflow Optimization . 17
2.8.2 User-In-the-Loop Optimization . 19
2.8.3 Summary . 20

3 Proposed Cloud Task Scheduling Framework 21
3.1 Proposed Cloud Task Scheduling Framework 21
3.2 Integrating User-In-the-Loop (UIL) . 24
3.3 Existing Tools . 27

3.3.1 jMetal . 27
3.3.2 CloudSim . 28
3.3.3 WorkflowSim . 29

iv

4 Experimental Setup 31
4.1 Creating Tasks and Virtual Machines . 31
4.2 Solution Representation . 32
4.3 Stopping Condition . 33
4.4 Optimization Objectives . 33
4.5 Algorithm Settings . 34
4.6 DataSet of Study . 34

5 Results 35
5.1 Comparing MOEAs with Traditional Algorithms 35

5.1.1 Solving for 4 Maximum VMs . 35
5.1.2 Solving for 8 Maximum VMs . 37
5.1.3 Solving for 12 Maximum VMs . 39
5.1.4 Solving for 16 Maximum VMs . 41
5.1.5 Pareto Front plots . 43

5.2 User-In-the-Loop . 48
5.3 Discussion . 52
5.4 Limitations of the Study . 54

6 Conclusions and Future Work 55

A Appendix 56
A.1 UIL Test Case . 56

Bibliography 62

v

List of Figures

1.1 The System model of task workflow scheduling in Cloud Computing 2

2.1 Genetic algorithms 4-bit chromosomes . 8
2.2 Multi-Objective Optimization [14] . 11
2.3 Epsilon Quality Indicator [64] . 13
2.4 Hypervolume Quality Indicator [3] . 13
2.5 MOCell Process flow steps [23] . 16

3.1 Framework Block Diagram . 22
3.2 Flow Chart Process of Framework . 23
3.3 Flow Chart of Framework with UIL . 26
3.4 UML Class Diagram of jMetal [23] . 27
3.5 CloudSim Framework [15] . 28
3.6 Directed Acyclic Graph Structure [71] . 30
3.7 WorkflowSim Framework [12]. 30

4.1 Reading Tasks and Attributes for Simulation 31
4.2 Creating VMware on the Data Center . 32
4.3 Cloud Simulation Test . 32
4.4 Resource Allocation for Problem as GA in a binary set 33

5.1 CyberShake Workflow Total Execution Time vs Total Virtual Machine Exe-
cution Time. 44

5.2 HEFTStudyWorkF lowTotalExecutionT imevsTotalV irtualMachineExecutionT ime. 44
5.3 Montage WorkFlow Total Execution Time vs Total Virtual Machine Execu-

tion Time. 45
5.4 CyberShake Workflow Virtual Machines Used vs Total Execution Time. . . . 45
5.5 HEFT_study Workflow Virtual Machines Used vs Total Execution Time. . . . 46
5.6 Montage Workflow Virtual Machines Used vs Total Execution Time. 46
5.7 Non-Identical 12 Virtual Machines Box Plot for CyberShake Workflow. . . . 47
5.8 Non-Identical 4 Virtual Machines Box Plot for HEFT-study Workflow. 47
5.9 Non-Identical 8 Virtual Machines Box Plot for Montage Workflow. 48
5.10 CyberShake workflow Non-Identical 8 Virtual Machines With and without UIL 51
5.11 Montage workflow Non-Identical 8 Virtual Machines With and without UIL . 51
5.12 CyberShake Workflow and Non-Identical 12 Virtual Machines With and with-

out UIL . 51

vi

5.13 Montage workflow Non-Identical 12 Virtual Machines With and without UIL 52

A.1 UIL Running Mode. 56
A.2 Start UIL Process . 57
A.3 Check the Input of Selection from User . 57
A.4 User doesn’t select the region . 57
A.5 Read and Draw the Population set . 58
A.6 Next chart from Population set . 59
A.7 Creates the Region of Interest from Population set 60
A.8 UIL Stop Condition . 61

vii

List of Tables

4.1 Workflow Optimization Algorithm Settings 34

5.1 4 Identical Virtual Machines . 36
5.2 4 NonIdentical Virtual Machines . 37
5.3 8 Identical Virtual Machines . 38
5.4 8 NonIdentical Virtual Machines . 39
5.5 12 Identical Virtual Machines . 40
5.6 12 NonIdentical Virtual Machines . 41
5.7 16 Identical Virtual Machines . 42
5.8 16 NonIdentical Virtual Machines . 43
5.9 Results for User Out of the Loop . 48
5.10 Results for User In the Loop . 49
5.11 Non Dominated Points when The User is Out of Process 49
5.12 Non Dominated Points when The User is the Process 49
5.13 The User Involves in the framework processes five minutes 50
5.14 Non Dominated Points when The User is the Process 50

viii

List of Abbreviations

UIL User-In-the-Loop

UOL User-Out-of-the-Loop

MOGA Multiobjective Genetic Algorithms

NSGA Nondominated Sorting Genetic Algorithms

EMO Evolutionary Algorithm Optimization

SBSE Search-Based Software Engineering

GA Genetic Algorithm

EA Evolutionary Algorithm

MOOP Multi-Objective Optimization Problem

EPS Exceedance Probability Score

IGD Inverted Generational Distance

PF Pareto Front

PSO Particle Swarm Optimization

SA Simulated Annealing

DCS Distributed Computing System

DAG Directed Acyclic Graph

PGA Parallel Genetic Algorithms

VMs Virtual Machines

FCFS First Come First Serve

ISBSE Interactive Search-Based Software Engineering

WSA WorkflowSim Algorithms

1

Chapter 1

Introduction

Search-Based Software Engineering (SBSE) uses the Metaheuristic search techniques, such
as genetic algorithms and simulated annealing. It seeks to find optimal solutions or a range
of alternative solutions to software engineering problems [33]. Over the past decades, the
way that applications deal with data, networks, and cloud has changed significantly. More
complex tasks have surfaced, requiring more resources to accomplish. Thus, finding efficient
task scheduling optimization and planning techniques has become a big challenge under these
circumstances [50, 31].

1.1 Problem Statement

The cloud computing[52] environment has two optimization algorithm approaches; the first
one works on the optimization of resources [49, 76] and the second one aims to optimize
tasks in cloud computing [50, 57]. Both approaches are designed to optimize tasks in cloud
computing environments. Otherwise, the resources allocation approach aims at minimizing
the usage of the number of resources available at the cloud environments during operation.

The problem of cloud workflow optimization is traditionally defined as follows:

Given a set of required Tasks [T1, T2, ..., Tm]

and a set of available Virtual Machines (VM1, V M2, ..., V Mn)

assign an ordered subset of tasks to each virtual machine

each task should be assign to one virtual machine only

the total task execution time Runtimetotal

is minimized.

(1.1)

Therefore, a set of tasks are to be assigned to the same resources in cloud environment; with-
out balancing between resources and the total execution time for the workflow. On the other
hand, the scheduling algorithms use the spec of tasks, thus, the resources in this approach will
not be considered, because this approach aims at assigning these tasks to their resources with
a minimum total execution time. Both approaches have consistent behavior and no diversity
in their solutions. So if the workflow is repeated multiple times, very similar results will be

2 Chapter 1. Introduction

generated with little variability, and there are no enhancements in the solutions as the work-
flow is re-executed. The System model of task workflow scheduling in Cloud Computing is
shown in Figure 1.1.

Figure 1.1: The System model of task workflow scheduling in Cloud Computing

1.2 Proposed Solution

Researches started introducing new approaches in SBSE that are called interactive approach
[61, 34]. This approach means that the user is able to guide search process or make a ref-
erence point to be available in evaluating solutions. This study proposes a framework to
execute a workflow of tasks in cloud computing with and without User-In-the-Loop (UIL).
Meta-heuristic workflow is a new challenging task schedule, especially when these tasks are
executed in a cloud computing environment that has multiple processes and a shared memory
in different data centers.

The proposed framework works as follows: We need to distribute tasks to a set of virtual
machines provided by Cloudsim and WorkflowSim. Then, calculate the total executing time
for all tasks with the minimum resource available. We use jMetal to run multi-objective
evolutionary algorithms (MOEAs) and find a set of Pareto-optimal workflows. The results
from our experiment should be comparable with the traditional algorithms results in order to
find the best optimal solution for the tasks scheduling problem.

The study has two phases, the first phase creates the scheduling work-flow based on
metaheuristic algorithms to compare the results with the WorkflowSim results ([12]). In
the second phase, we test the hypotheses and introduce the user-in-the-loop approach. The

1.3. Impact of the proposed solution 3

study uses formatted Directed Acyclic Graph (DAG) files as a data set that was provided by
WorkflowSim.

We used CloudSim ([15]) and jMetal ([23]) in our research in order to execute and sim-
ulate the problem to find near-optimal solutions for Task Scheduling in Cloud Computing
using Heuristic Algorithms ([31]).

1.3 Impact of the proposed solution

The study presents a new approach with MOEAs and UIL. We conducted the experiments in
two phases. The first phase aims at integrating WorkflowSim [12] and jMetal [23] tools to
be able to execute the workflow in a Multi-Objective approach [70] and compare the results
between algorithms. For the second phase we used an integrated Evolutionary Algorithms [6]
with UIL in order to enhance solutions through guiding the search process of Evolutionary
Algorithms. The tasks of workflows have many characteristics such as time, length, and
size of input data files. The Virtual machines on cloud tools also have many characteristics
such as CPU, RAM and data center characteristics. We distribute these tasks to a set of
virtual machines available in a could computing environment and align them to minimize the
resource allocation, thus decreasing the cost of resource usage, and allowing the user to select
a region of interest to guide the algorithm search scope. The contributions of this study are:

1. Integrating jMetal and WorkflowSim tools.

2. The results of MOEAs are comparable with traditional algorithms.

3. The user is able to select a region of interest and interact with algorithm through a GUI.

4. The user is able to stop and restart the process to start the selection region of his interest
through GUI.

5. The user is able to change the region selected to a new one during algorithm execution.

6. Optimizing the execution of workflow in cloud computing environment.

7. Optimizing the cost of processing tasks in cloud computing environment.

8. Optimizing the resource allocation in cloud computing environment.

1.4 Research Questions

This study seeks to answer the following research questions:
RQ1: How do MOEAs compare with traditional WorkflowSim algorithms with regards

to minimizing the total task running time?
RQ2: How do MOEAs compare with traditional WorkflowSim algorithms with regards

to minimizing the maximum task running time across virtual machines?
RQ3: How do MOEAs compare with traditional WorkflowSim algorithms with regards

to minimizing the number of virtual machines required for a certain workflow?

4 Chapter 1. Introduction

RQ4: How does the User-In-the-Loop approach improve the ability of MOEAs in mini-
mizing the three objectives?

1.5 Organization of this document

The rest of this study is organized as follows: Chapter 2 reviews background material on
Cloud Computing, Traditional Optimization Algorithms, Genetic Algorithms, Crossover op-
eration, Mutation operation, multi-objective Optimization, Interactive Search-Based Soft-
ware Engineering and Quality Indicators, and multi-objective evolutionary algorithms (MOEAs).
Chapter 3 introduces the related works in finding optimal solution for task scheduled problem
and using reference points to guide the scope of searching algorithm. Chapter 4 introduces
our framework and user-in-the-loop, in addition to existing technical tools overview, namely
jMetal, WorkflowSim and CloudSim frameworks. Chapter 5 presents the research method-
ology, Experiment Setup and Procedures plan. Chapter 6 shows the results comparing the
solutions of MOEAs with traditional algorithms, and the results when we involved user in
the loop. This Chapter ends with discussing the results and the Limitation of the Study.
Finally, the researcher will provide conclusions and Future Work.

5

Chapter 2

Background and Related Work

This chapter presents the main concepts and terminology in cloud computing and search-
based software engineering. It also presents the most commonly used task optimization
methods. Then, it introduces Multi-objective Evolutionary Algorithms (MOEAs) and the
interactive optimization approach. Finally, we review the closely related literature in the area
of cloud workflow optimization and interactive methods.

2.1 Cloud Computing

Cloud Computing is a distributed system that consists of a number of resources such as CPUs,
memories, databases, networks and other hardware and software components [52]. Cloud
platforms aim at optimizing the available resources allocated for all customers in demand
with good quality. The cost of this allocation with good quality will be affected based on the
resource allocation. Therefore, the Cloud system is useful for the applications that are time
critical and depend on the user. However, the Cloud computing system has a number of core
limitations. One of them is the limited number of available resources. The Cloud system
provides a set of hosts such as, virtual machines (VMs) and computing servers that have a
limited capacity. Furthermore, the Cloud system has two models, the public cloud and the
private cloud. The two models have a different type of ownership and provide a different set
of access rights. Thus, the users are able to control these resources if they own the software
and resource allocations policies and techniques.

The main differences between grid computing[26] and cloud computing are: in the cloud
computing the user is able to control it and has a price chargeable, that means the user owns it,
obverse grid computing resource sharing the resources and doesn’t have a price but it could
have a quota. The cloud computing is a new technology and it is not widely used, but as
perspective views technology it could be more flexible than the grid computing in managing
and provisioning the resource [44].

2.2 Traditional Scheduling Algorithms

In a scheduling system, there are component process that compete for processing, where
each component needs a certain execution time to process. Task Scheduling algorithm is a
set of roles that aim at controlling the order of tasks that are being performed by machines.

6 Chapter 2. Background and Related Work

The tasks could be inter-dependent or independent ones, which means the policies could be
changed according to the type of tasks. The Scheduling Workflow tasks is not easy and there
are some issues addressed as following: The process time and costs ordering tasks to execute
is on domain; performance costs of these tasks when executed; The communication costs
between machines and tasks; the resource availability in the domain; finally the bandwidth
and capability of the network in order to execute tasks. There are various types of scheduling
algorithms for distributed computing systems. Scheduling algorithms help in managing the
CPU and memory availability as well as getting the maximum resource utilization [37]. The
main advantage of scheduling algorithms is to achieve high performance computing and to
get the optimum system throughput. Task scheduling is a process of allocating one or more
time slots to one or more resources [37]. Cloud task scheduling is about assigning multiple
tasks to different virtual machines. A cloud environment scheduling scheme is applied to
minimize the completion time of a specific task or the makespan of a system. However, it is
difficult to schedule a set of submitted tasks from different users on a shared set of computing
resources. Thus, in this study we develop a scheduling algorithm that improves the process of
assigning multiple tasks that have different parameters to multiple virtual machines by using
the genetic algorithm (GA) in order to optimize the task planning process.

There are two approaches in task scheduling [28]. The first one is online or real time
scheduling, which means the tasks will be executed immediately using the available resources
without any delay, this kind of scheduling applied to dynamic scheduling which means we
need to consider and utilize the resource available rather than execution running time. The
second approach is offline task scheduling, which means this static scheduling tasks, and
there is a time to program algorithms, also there is a time to estimate execution time. This
approach enables us to prepare a provisioning plan for tasks to assign resources to them, then
execute the tasks according to this provisioning plan.

The following scheduling algorithms are used for optimizing tasks [49, 76].

• First Come First Serve: tasks are executed based on a first come first serve basis. This
is a non-preemptive scheduling algorithm [8]. This algorithm has low performance as
each task has a waiting time in order to be executed, which could cause a high average
waiting time.

• Minimum Completion Time Scheduling (MICT): it assign a set of tasks to a machine
using the calculation of smallest execution time for all available tasks in workflow.

• Maximum Completion Time Scheduling (MXCT): it assigns a set of tasks to a machine
using the calculation of longest execution time for all available tasks in workflow.

• Data Aware Scheduling: improves performance by accounting for the location of the
task’s data when executing it.

• Round Robin Scheduling: a preemptive process scheduling algorithm. Each process
is given a fixed time to execute and then it is preempted to allow other processes to be
executed.

2.2. Traditional Scheduling Algorithms 7

The following scheduling algorithms work in heterogeneous cloud environment to opti-
mize the workflows [68]:

• Heterogeneous Scheduling with Improved Task Priority (HSIP) [30]: The study pro-
posed to calculating the standard deviation of communication cost between edges in-
stead of the mean value in algorithm to determine the priority of tasks, then re-assign
tasks to their resources if the resource is needed by another process.

• Predict Earliest Finish Time (PEFT) [4]: the study presents a new approach based
on optimistic cost table (OCT). The study claims that this is the first algorithm to
outperform HEFT for a workflow that has the same time complexity.

• Heterogeneous-Earliest-Finish-Time (HEFT) [69]: Is one of heuristic algorithms [42]
and it is able to work with heterogeneous resources and schedule tasks based on ex-
ecution time. It also considers the communication time between these tasks. The
algorithm ranks the tasks according to the calculated values and assigns them to the
resources available in the cloud environments starting with the minimum time. Thus,
the HEFT has two processing steps: first the rank process in order to set priority for
the task to be executed, and this process calculates the communication costs between
edges and cost of tasks according to critical path then rank these tasks. The second
process is the selection process, which aims at assigning tasks to it, which means each
tasks will be known on which machine it has to be executed. The process calculates the
earliest complete time for a given task. HEFT doesn’t consider the network topology
and bandwidth allocation on environment.

Algorithm 1 Pseudo-code Heterogeneous-Earliest-Finish-Time

Calculates the Computation costs of tasks and
costs of edges with mean values.
Rank(U)All_tasks using traversing graph upward through
starting from the exit task.
Sort_tasks_inscheduling_list(SCHLIST) by non-increasing order of
Rank(U).
while TasksNotSchedulein← SCHLIST do

Selectjobi ← SCHLIST (TasksNotSchedule) get job ID for
scheduling

for eachmachinek do
ComputeEST (i, k)valueusing insertion-based scheduling

policy
Assignthejob(i)_To_machine(j) that minimized EFT of job i.

end for
end while

• Distributed Heterogeneous-Earliest-Finish-Time (DHEFT) [12]: is a new version of
HEFT. The aim of this algorithm is to optimize the communication cost instead of the
average time as calculated in HEFT. The HEFT planning assigns tasks according to
the ranking process for that tasks as explained, which means we know the cost of each
task before starting the algorithm. First, DHEFT finds the costs of executing tasks

8 Chapter 2. Background and Related Work

with no priority. Then it create a list of tasks that has all tasks ready to be executed
on machines. Then DHEFT checks if a task is ready and all parts that belongs to this
task are ready to use, then, starts the estimated execution time for that task, if not,
then assigns the task to this machine and go to the next task to execute it, Every time
the algorithm checks if this task is ready to be executed with their parts or not, hence,
there is no need to wait the resources, so, it will list machines with tasks with less
computation time, and less waiting time.

• Robustness Heterogeneous-Earliest-Finish-Time (RHEFT) [68] is schedule algorithm
developed for independent tasks, also, RHEFT is a new algorithms combined between
two algorithms HEFT and DHEFT.

2.3 Genetic Algorithm

Genetic algorithm (GA) [19] is a meta-heuristic algorithm built to use natural selection, and
is a type of evolutionary algorithms (EA). It generates a random population then evolves this
population of individuals in stochastic iterations (generations). GA was developed to emulate
the natural optimization principles occurring in living organisms. The Genetic algorithm uses
a population to find and optimize the best nearest solution. The initialization of the population
size depends on the problem type. Then, the algorithm creates the solutions randomly with
their features as chromosomes. The solutions could be presented in binary (i.e., bits in array),
or in other format types such as, string or integer.

Figure 2.1: Genetic algorithms 4-bit chromosomes

2.3. Genetic Algorithm 9

Algorithm 2 Genetic algorithm pseudo-code

StartT ime← LocalMachineStartT ime
StopCond← CondT ime =
StopDone← false
Popl← CreatetheInitialofPopulation(PopulationSize← PopulationSize)
Popl← StartTheEvaluationofPopulation(Popl)
Popl← AssignTheF itnessV alueToEachMember(Popl)
while StopDone 6= True do

StartANewGeneration← selectMembersOfPoplForCrossover(Popl)
NewGeneration←MutatePopulation(NewGeneration)
Popl← AssignTheF itnessV alueToEachMember(Popl)
EndTime← LocalMachineT ime
StopT ime← EndTime− StartT ime
if StopT ime >= StopCond then

StopDone← True
end if

end while
PrintFeasibleAfterEvalutaion← ThefittestMemeberOfPopulation(Popl)

2.3.1 Selection

The genetic algorithms (GA) are heuristic search algorithms influenced by the evolutionary
ideas of natural selection and genetics. The GA algorithms generate solutions to the opti-
mization problems using techniques inspired by natural evolution, such as the mutation, the
selection, and the crossover. In general the algorithm starts with a randomly generated so-
lutions set (individuals), each one of these individuals represents a feasible solution in the
problem search space. The solution evolves over a number of generations based on some
reproduction plan especially the crossover and the mutation. After each generation the indi-
viduals are evaluated based on some fitness functions. The individuals for the next generation
are selected based on a selection policy and the fitness value, Also, the individuals that have
higher fitness values will be given a higher probability in offspring process. The final step
is reached when no improvement over a number of generations is observed, and at this step
the final solution is considered to be the best solution. The GA allows to create sampling of
search space, thus, the developer will be able to guide the search process using the previous
sample space.

In fact the selection process evaluates the fitness of each individual and choose the best
ones among all of them, while the crossover operation merges two individuals to provide new
ones, finally the purpose of mutation allows moving each solution to one of its neighbors in
order to maintain a good diversity during the process of optimization.

2.3.2 Crossover operation

The crossover operator merges the orderings of two parent elements. In a crossover operator
GA uses two chromosomes in order to create the next generation of solutions. This means
that the first two chromosomes are considered as the parents and the next set of created chro-
mosomes are considered as the children, which means the chromosome will be a parent and

10 Chapter 2. Background and Related Work

create from this chromosome his child’s. Crossover is important for improving the population
by exchanging the quality of high blocks. it inherits the value information to children from
the parents, which means the sequences are combined from parents, thus, the information
will pass to their children in one string. The common Crossover used are [6, 2].

• One-point crossover: It is a process to selects a random position point for parents, then
the two parents will exchange all their bits with all information after that position.

• Two-point crossover: It is a process to select a random position two points for parents,
then the two parents will exchange all their bits with all information after that position.

• k-point crossover:It is a process to select a random position k points for parents, then
the parents will exchange all their bits with all information after that position.

• Uniform crossover:it exchange alleles with a given probability for each selected posi-
tion points.

2.3.3 Mutation operator

Mutation is one of a genetic operator used to keep the genetic diversity between generations.
Mutation modifies one or more gene values in the chromosome and changes its initial state
(i.e., the mutation operators change some positions in an element). Thus, applying mutation
more than one time will improve the GA solution. In mutation a permutation between two
variables is performed, the two variables will be selected randomly according to probability
defined, after that the two variables are swapped. The mutation probability should be kept
low, as having high value of it could turn the problem into a primitive random search problem.
Mutation operator is to allow moving from the current solution to the neighboring solutions.
It is considered as a good step to find new solutions from two different variables. Because
the initial population is randomized the mutation effects has the impact at the end of the
process rather than in the beginning, flipping bits and the beginning will not have a great
impact, while at the end it can change the things dramatically after the population converges.
In our study we are using Binary Mutation that means each bit of offspring has a probability
(mutation rate) to flip (0-1 or 1-0).

2.4 Multi-Objective Optimization

The optimization problem is finding acceptable optimal solutions for all objectives with their
fitness functions. Multi-objective optimization problem maps a set of decision variables to
a set of objective values, then, finding a vector from the decision space variables, which
satisfies the objective functions and the constraints. Equation (2.1) is the formal equation for
Multi-objective optimization problem (MOOP) [21, 1]:

2.4. Multi-Objective Optimization 11

Minimize
x

F (x) = [f1(x), f2(x), ..., fM (x)]

subject to

G(x) = [g1(x), g2(x), ..., gJ(x)] � 0,

H(x) = [h1(x), h2(x), ..., hK(x)] = 0,

xLi � xi � xUi , i = 1, ..., N.

(2.1)

where
x = (x1, x2, ..., xN)T and its a vector of the N decision variables.
M is the number of objectives fi.
J inequality and K equality constraints.
xLi and xUi are respectively the lower and upper bound for each decision variables xi.

Figure 2.2: Multi-Objective Optimization [14]

The Pareto Front is the set of all non-dominated solutions. Non-dominated solutions rep-
resent those solutions that are the best according to at least one of the optimization objectives.

2.4.1 Search and Decision Making

There are two approaches to solving MOOP: The search process and the decision makers
(DM) [35, 38]. The first approach starts to find optimal solutions, and these solutions will
be feasible to end user, then, the user will be able to select the feasible solutions. The sec-
ond approach creates a set of decision points, then the algorithm start using that points of
decision as a reference through searching process to find optimal solutions. According to the
optimization problem and how the decision process will be combined, the multi-objective
optimization methods can be categorized as follows:

12 Chapter 2. Background and Related Work

• The decision created before the search process started: which means the objectives of
the MOOP are aggregated into a single object based on the reference point given by
DM.

• Start search process before creating the decision: the algorithm starts the search pro-
cess to find optimal sets of candidate solutions, then enabling the user to choose which
solution is optimal.

• The decision is created during the search process: The DM is able to create the prefer-
ences while the search is running, by using the current state of optimization to guides
the search and trade-off between objective.

2.4.2 Quality Indicators

Quality indicators are numeric measures of the coverage and diversity of solutions in the
Pareto Front. The quality indicators below are used in our study for all algorithms used:

• Spread ([70]) indicator uses the members of Pareto Front set on the boundaries for its
calculations. The linear scalarized algorithm obtains two (extreme) results, which are
the results that have the highest distance value from each other (i.e., located far away
from each other). The result is the best generalized spread value and maximized the
distance metrics to measures how these elements far from non-dominated vectors.

• Inverted Generational Distance (IGD) ([54]) is used to calculate Euclidean distance
between Pareto optimal and maximize the distance metrics to measure how far the
elements in the set are from non-dominated vectors. In some cases we will find the
value of IGD equal zero, which means all solutions created has been covered in search
space.

• Epsilon quality indicators ([77]), it does not normalize the evaluation values. It ap-
plies the crowding distance metric among evaluation values. However, for the binary
additive the epsilon indicator gives the minimum sum and exceeding probability score
(EPS). Then, each vector in B can be added to every objective, thus, resulting approx-
imation set is weakly dominated by A.

2.4. Multi-Objective Optimization 13

Figure 2.3: Epsilon Quality Indicator [64]

• Hyper-volume ([54]) indicator provide the hyper-volume between the estimated Pareto
front (black) as a new solution and a reference point (red).

Figure 2.4: Hypervolume Quality Indicator [3]

14 Chapter 2. Background and Related Work

2.5 Interactive Optimization

Interactive Search-Based Software Engineering (ISBSE) is a new approach that enables the
user to interact with the search while the algorithm is running [48]. This approach helps in
getting the optimal solution by controlling the crossover especially for GA and assess the
experience by adding the user input to the search process. This approach is used in Software
Testing [48, 46, 55, 18], where the users are allowed to interact with the system in order to
guide the evolution of the search-based solutions. The results show that the users can affect
the final outcome, however, there is some limitations as there is a need for expert users to be
involved in the search process.

2.6 Exploration and Exploitation

The population based algorithms as NSGA-II, MOCell and IBEA aims at addressing the
exploration and exploitation search space [17]. Exploration is a process that aims at visiting
a new area of search space and find the best optimal points in that area. The Exploitation
is a process aims at visiting the neighborhood of the visited area. The EA such as Genetic
Algorithms is a search based algorithm. This means these algorithms looking to archive
for a trade-off between Exploration and Exploitation. According to [17], the EAs are more
effective and they have the best trade-off ration in Exploration and Exploitation processes.
The good EAs could be developed with good understanding Exploration and Exploitation.
The EAs aims at controlling and finding a balance between Exploration and Exploitation
processes. The Exploration and Exploitation create a different approach and algorithm. The
Exploration and Exploitation affects when the EAs start to find and use the best selection
mechanism and crossover mutation in order to solve the problem, that means if we have
high crossover and mutation rates it will gives high explore, but this is not a general role we
need more experiments to find the ration between these parameters. Therefore, we tested
our problem many times using different values for crossover and mutation to get the best
trade-off between Exploration and Exploitation processes. The Exploration and Exploitation
could be affected by population size and the representation of individuals, for example, if the
population size is too large, the search space is explored more than with a smaller population
size. The controlling of all parameters and setting in EAs will be considered to find the best
ration between Exploration and Exploitation process, which means If the rates of each of
crossover and mutation are too large, thus much of the space will be explored, but there is a
high probability of missing good solutions and of failing to exploit existing solutions.

2.7 Multi-Objective Evolutionary Algorithms (MOEAs)

Many algorithms have been developed to solve multi-objective optimization problems. The
most of MOEA approaches based on Pareto selection [16] that elite solutions to be used
and improve the solutions to guide the search process [22]. The MOEAs create a set of
non-dominated solutions called Pareto Fronts. The MOEAs aim to enhance those solutions,

2.7. Multi-Objective Evolutionary Algorithms (MOEAs) 15

and cover all possible solutions with among diversity between these points in the search
space or scope. The main difference between multi-objective optimization algorithms is how
the selection process, evaluating solutions, crossover, mutation and how these algorithms
candidate non-dominated solutions to compare it in the next generation of the population.
The Second population will create Pareto solutions and creates another generation and so on
to find the optimal solutions among generation.

2.7.1 Multi-Objective Cellular genetic algorithm (MOCell)

Multi-Objective Cellular algorithm (MOCell) [56] is one of EA and it selecting two parents
from defining neighborhood and the distance between them. MOCell creates non-dominated
points in an external archive. The MOCell uses the archive to compare the non-dominated
points with the new generated solution with existing solutions as the pseudo-code of algo-
rithm below 3. MOCell ranking the solutions in archive area according to crowding distance
to ordering these non-dominated solutions, then if the new solutions are worse than the exist-
ing then MOCell will replace it with the best one from the archive. The MOCell checking the
size of external archive to make sure it will not be full, these concerns solved by removing
the worse solutions from archive if they are worse than the optimal solutions.

Algorithm 3 Pseudocode of MOCell
Pareto front = Create Front() . Creates an empty Pareto front
while StopCond 6= True do

for individual = 1to←MOCell.popSize() do
nlist← GetNeighborhood(MOCell, position(individual));
parents← Selection(nlist);
offspring ← Recombination(MOCell.P c, parents);
offspring ←Mutation(MOCell.Pm, offspring);
EvaluateF itness(offspring);
Insert(position(individual), offspring,MOCell, auxpop);
InsertParetoF ront(individual);

end for
MOCell← popauxpop;
MOCell← popFeedback(MOCell, ParetoFront);

end while

16 Chapter 2. Background and Related Work

Figure 2.5: MOCell Process flow steps [23]

2.7.2 Indicator-Based Evolutionary Algorithm (IBEA)

IBEA [77] is one of the EAs comparing the individuals using a quality indicator to calculate
the fitness values. So the fitness of individuals selected by the value of quality indicator
calculated to that individual and the user able to be preferences, so, there is no need to create
a diversity of populations and their fitness to be shared and used. The IBEA enabling to use
various binary indicators and it works to eliminate the worst individual solutions from the
population sets, then updating the fitness values of the remaining individuals.

Algorithm 4 IBEA Pseudocode
Initialization Generates an initial population P with N individuals
while StopDone 6= True do

Fitnessassignment Calculates the fitness values using the quality indicator
Enviromentalselection Until the size of P does not exceed N,
removes the individual with the smallest fitness value,
and recalculates the fitness value of the remaining individuals
Matingselection Performs binary tournament selection with replacement on P,
in order to fill the temporary mating pool P
V ariation Apply recombination and mutation operators to the mating pool P,
and add the resulting offspring toP
EndTime← LocalMachineT ime
StopT ime← EndTime− StartT ime
if StopT ime >= StopCond then

StopDone← True
end if

end while

2.8. Related Work 17

2.7.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA [22] is an EA algorithm developed to improve the candidate solutions of popula-
tion. The NSGA-II is a new version of NSGA. It was developed to support multi-objective
problems to minimize the cost function. The population is sorted into a hierarchy of sub-
populations based on the ordering of Pareto dominance. Within each order, the solutions are
ranked according to the crowding distance metric.

Algorithm 5 Pseudocode for NSGA-II

Initialization← (PopulationSize, ProblemSize)
EvaluateAgainstObjectiveFunctions(Population)
FastNondominatedSort(Population)
Selected← SelectParentsByRank(Population, PopulationSize)
Children← CrossoverAndMutation(Selected, P_mutation, P_crossover)
while StopDone 6= True do

EvaluateAgainstObjectiveFunctions(Children)
Union←Merge(Population,Children)
Fronts← FastNondominatedSort(Union)
EvaluateAgainstObjectiveFunctions(Children)
CrowdingDistanceAssignment(Fronts);ParentsMerge(Parents,EachFront)
SortByRankAndDistance(Fronts)
Selected← SelectParentsByRankAndDistance(Parents, PopulationSize)
Population← Children
Children← CrossoverAndMutation(Selected, P_mutation, P_crossover)
if StopT ime >= StopCond then

EndTime← LocalMachineT ime
StopT ime← EndTime− StartT ime

end if
if StopT ime >= StopCond then

StopDone← True
end if

end while

2.8 Related Work

This section discusses the related work in cloud workflow optimization, as well as related
work in Search-Based Software Engineering with reference point and user-in-the-loop.

2.8.1 Cloud Workflow Optimization

Research in task scheduling whether independent or inter-dependent started many years ago
[29, 10, 43, 62, 39]. During this period a lot of researchers started to find and solve the prob-
lem in both directions theoretical and technical experiments by providing some algorithms
and modules for the scheduling tasks [25, 27, 9, 67, 59]. Grid computing was introduced
as a new technology [11], which meant the same problem presented again but the environ-
ment is different, so the same problem should be solved using the grid technology with new
approaches such as Meta-heuristics algorithms. [32, 74, 60, 11, 47, 58]. The researchers

18 Chapter 2. Background and Related Work

started to find and rebuild their algorithms and modules to serve this technology and make
their tools compatible with the new technology. Now cloud computing has been developed
and it poses similar challenges. As a researcher, we have to solve the same problem with
this technology and provide new approaches to solving it, using more flexible solutions [7],
because the problem still active and needs more efforts and research to solve it as well in the
dynamic environment.

Page and Naughton [57] investigated dynamic task scheduling in heterogeneous comput-
ing using GA. In their experiment some tasks were executed, while other tasks were listed in
the queue to be presented for a processor in the future. This means that for each processor,
the scheduler creates a list of tasks to be executed.

Jooyayeshendi and Akkasi [41] showed how to balance the load of multiple tasks on
Distributed Computing Systems (DCS). They used the load-balancing algorithm framework
to calculate node power for each system. They found a different rate of processing for each
task because of the processors heterogeneity. The results showed that the algorithm run-time
is increased linearly when the number of tasks increase. They also found that GA is better
for load balancing compared to Simulated Annealing (SA).

Zhang et al. [76] introduced scheduling algorithm in grid computing. To solve it, they
used particle Swarm Optimization (PSO) [24] and GA [19]. The study aimed at getting a
schedule with minimum execution time and resources of tasks. Their results showed that
the Genetic algorithm and the Simulated Annealing algorithms spent more time when the
number of tasks increased. However, the problem was solved using both algorithms.

Zhan et al. [75] suggested mixing Particle Swarm Optimization (PSO) [24] and Sim-
ulated Annealing (SA) algorithms [19] to get a hybrid scheduling algorithm. They used
CloudSim [15] to simulate the problem in the cloud computing environment. they used GA
to get more convergence between solutions and help PSO to jump out of local optima and
avoid sinking into the local optimal solution early. Their results showed that the Genetic al-
gorithm and the simulated Annealing algorithms spent more time when the number of tasks
increased. However, the new hybrid algorithm outperforms other algorithms.

Huang and Jie [36], executed workflow in cloud environment to minimize the cost of
service in cloud computing environment under costs and time constraint using Genetic Al-
gorithms. They used Workflow-sim to compare results obtained from GA with HEFT and
MICT algorithms. The results showed that GA outperformed HEFT and MICT in optimizing
scheduled tasks.

Yu et al. [73] introduced the same problem but in grid computing, and they proposed
to solve it using GA after comparing the results with HEFT and greedy cost (GC). The
GC approach seeking to minimize the execution cost for workflow while binding tasks to
their resources available at the grid environment. They called these algorithms non-heuristic
algorithms. To conduct the experiments, they used GridSim [73] seeking to minimize the cost
and time of tasks for workflow with deadline constraint. The study used two workflow data
types and non-balanced structure workflows. According to the results shown in the study, the
GA outperformed the non-heuristic algorithms in complex workflow structures.

2.8. Related Work 19

Jena and RK [40] used PSO algorithm to solve the resource optimization problem in
cloud computing. The study used Cloud-Sim and they integrated PSO with EAs to get a
good spread of solutions. The tasks were distributed to more than one Data center and each
user was limited to assign their tasks to one Data center only. The study confirmed the ability
of PSO to solve the task schedule problem in cloud computing in multi-objectives and the
effectiveness of PSO to optimize the resources.

Srichandan et al. [66] introduced a new bacteria foraging algorithm (BFA). The BFA
was integrated with GA in order to use a crossover and mutation operator and solve the
problem in multi-objectives in cloud computing. The study supposed the resources are highly
heterogeneous in the cloud environment. The study intended to minimize the execution time
per machine and the commutation bandwidth cost among machines and Data centers. The
study used the completion time task per request from the user which means the time per
task was calculated from the total previous tasks to the current task. The study also defined
the energy consumption model as a second objective. The researchers aimed at achieving
load balancing, so they calculated the ideal ratio when starting the initial load distribution of
tasks, but that was too risky because the machine could be too busy with other tasks when
they calculated this ratio. According to the results shown in the study, the GA outperformed
PSO. Notably, the study did not handle the dependency between tasks.

2.8.2 User-In-the-Loop Optimization

Deb and Kumar [20] presented a new approach to improve NSGA-II to get near-optimal
solutions for a given problem. In this approach, the user selects one or more efficient solution
sets. The selection of point from solutions set to be a reference for multiple solutions in
multi-objective search for each population in each iteration. Then, the algorithm searches
to find the best solutions. After that, the algorithm classifies all vectors as dominated and
non-dominated. This is done after calculating crowding distance among vectors for other
populations. That means when the user selects a point the search is redirected to search
for all solutions closer to that point. Therefore, all Pareto fronts will be covered by this
procedure. Thus, getting some points from the user can help other objectives and improve
many objectives.

De Souza et al. [65] compared user performance in search algorithms for specific prob-
lems. They found that the users can be competitive in some cases. Thus, from their results we
found that the user can help to guide the search algorithm, which evaluates the best optimal
solution. Therefore, adding the user in the search process helps in decreasing the required
time to evaluate and eliminate the solutions that the user does not want.

Yamany et al. [72], built on a previous study [63] about the configuration of software
product lines. They presented a tool, which enables the user to select some options in order
to find the best fitness for optimal solution. The selection is set as a reference when the
algorithm restarts the search algorithm process for the optimal solutions. The user is included
as part of the algorithm, and they used indicator-based evolutionary algorithm (IBEA) [77]
since it proved to be the best method for this problem when compared to other algorithms.

20 Chapter 2. Background and Related Work

The results of the study showed that the users can guide the search process and add value if
we enable them to be part of the search algorithm.

Nebro et al. [55] proposed a new approach as extension to SMPSO. It allows the user
to interact with non-dominated archiving points for PSO. This interaction will be considered
during the algorithm execution and it could be changed by the decision marker. Thus, the
reference is used to effectively focus the search on one or more regions of interest. The
results showed that the new approach outperforms other traditional algorithms.

Longmei et al. [46]) produced a new paradigm modeling to prove that the preference
point model can be used to allow focusing search on the interesting part of the Pareto front.

Ramirez et al. [61] referred to "human-in-the-loop" [18] approaches and the way of in-
teraction to provide the user with current state, which enables the user to make his decision
and choose realistic solutions. The study presented the interactive mechanisms used to han-
dle many objectives and balance the trade-offs among these objectives. The human guided
search is one of these interactive mechanisms. The study presented the classification of user
interactive and search technique and showed the importance of SBSE and user interactive
approaches with search process and how many publication published in this filed. Accord-
ing to that classification we use a mix of two approaches: Interactive re-optimization and
Preference-based interactivity.

Li et al. [45], introduced a new approach "Target region-based" to solve the problem
of Satellite Earth Observations. The study used Evolutionary Algorithm (EA) with users
providing a target region. The results showed the user is able to affect the search scope.
Also, the results gave an advantage of using NSGA-II, which is the fastest algorithm among
MOEAs in the experiment.

2.8.3 Summary

This literature review shows that the task scheduling problem has been a common problem
for many years, especially in cloud computing. Although evolutionary algorithms were used
to tackle task scheduling, the previous studies didn’t present the differences between work
flow types and the could computing environment or dynamic machines. Furthermore, no
previous study utilized the User-In-the-Loop approach to help guide the evolutionary search.

In our study, we compare multiple multi-objective evolutionary algorithms (MOEAs) and
MOEAs with traditional algorithms. Then we enhance the search process by adding a user in
the search process, and getting input from him/her to find the best optimal solutions. Then,
we validate the results by comparing them to optimization results of existing algorithms.

The next chapter will present our methodology and the new Cloud Task Scheduling
framework with user-in-the-loop, also, we will review existing tools has been integrated to
our framework in order to conduct our experiment.

21

Chapter 3

Proposed Cloud Task Scheduling
Framework

In this chapter, we present the framework and how it was built to allow multi-objective task
scheduling for cloud computing, then, we review the existing tools which we utilized to build
our proposed framework.

3.1 Proposed Cloud Task Scheduling Framework

In this study, we integrate existing tools and add some classes to these tools to run our Frame-
work. The following are the changes added to the existing tools:

• MainClass: it has most of the settings needed to conduct our experiment.

• jMetal: It has most of the meta-heuristic algorithms and setting needed to conduct our
experiment.

• WorkflowSim : We created new algorithms (metaheuristic) extended to BaseSchedulin-
gAlgorithm.

Figure 3.1 presents the integration process flow of workflow scheduling algorithm
tasks. The results expected from this process find the best solution for the tasks
scheduling problem in cloud computing.

22 Chapter 3. Proposed Cloud Task Scheduling Framework

Figure 3.1: Framework Block Diagram

Figure 3.2 show the flow chart of the integration process. The flow chart presents how
the components interact together and how we integrate our work with existing tools too.

3.1. Proposed Cloud Task Scheduling Framework 23

Figure 3.2: Flow Chart Process of Framework

24 Chapter 3. Proposed Cloud Task Scheduling Framework

3.2 Integrating User-In-the-Loop (UIL)

User-In-the-Loop (UIL) approach in task scheduling is one of the important contributions of
this study. We need to distribute tasks to a set of virtual machines (VMs) that exist in a cloud
environment using jMetal tools and previous integration between tools. After that, we will
introduce the user as the main factor to effect the algorithm search process during running in
order to minimize the objectives problem and find the optimal solutions.

In this part of the study, we will develop a GUI for the end user to enable them to interact
with the integrated tools. The main goal of GUI is: to give the user an indication about the
current state of running algorithms but interrupting them; the user will be able to change
the scope of search if a region of interest is selected and generate selection file to existing
running algorithm; also, the user can select many times on the same population even if the
running process isn’t interrupted.

Figure 3.3 presents the components and how these components interact together while
integrated process is running. The Figure shows how the jMetal algorithms know if there is
an interaction by the user. Otherwise, the running algorithm will continue even if the selection
is done, because the data file of the selection is not created by the user and the process still
pauses. This approach considers the interruption time, which means the selection time is not
limited to the user.

Algorithm 6 Pseudo-code UIL
StartT ime← LocalMachineStartT ime
StopCond← CondT ime =
StopDone← false
CheckF ileUILExisit← false
UIL← false
Popl← CreatetheInitialofPopulation(PopulationSize← PopulationSize)
Popl← StartTheEvaluationofPopulation(Popl)
Popl← AssignTheF itnessV alueToEachMember(Popl)
while StopDone 6= True do

StartANewGeneration← selectMembersOfPoplForCrossover(Popl)
NewGeneration←MutatePopulation(NewGeneration)
Popl← AssignTheF itnessV alueToEachMember(Popl)
EndTime← LocalMachineT ime
StopT ime← EndTime− StartT ime
if StopT ime >= StopCond then

StopDone← True
end if
if CheckF ileStopExisit then

StopDone← True
end if
if CheckF ileUILExisit then

TouchFileSelection.TXT ← PrintThefittestMemeberOfPopulation >
UIL← True

end if
end while
PrintFeasibleAfterEvalutaion← ThefittestMemeberOfPopulation(Popl)

3.2. Integrating User-In-the-Loop (UIL) 25

Algorithm 7 Pseudo-code UIL Assign The Fitness Value To Each Member

UIL← false
if UserSelectionPointsexists then

ReadSelectionPointFromUSer ← UserSelectionPoints.txt
RemoveF ile← UserSelectionPoints.txt
•MinOpjective1•MaxOpjective1
•MinOpjective2•MaxOpjective2
•MinOpjective3•MaxOpjective3
•UIL = True

end if
if UIL then

for i = 0to← sizeofThefittestMemeberOfPopulation do
if Fitness1 > MaxOpjective1||Fitness2 > MaxOpjective2||Fitness3 >

MaxOpjective3 then
fitness1[i] =888888 . Dummy value to exclude the objective 1.
fitness2[i] =8888 . Dummy value to exclude the objective 2.
fitness3[i] =88 . Dummy value to exclude the objective 3.
sign real value

end if
end for

end if

26 Chapter 3. Proposed Cloud Task Scheduling Framework

Figure 3.3: Flow Chart of Framework with UIL

3.3. Existing Tools 27

3.3 Existing Tools

3.3.1 jMetal

jMetal [23] is a framework designed for meta-heuristic Algorithms for optimizing problems
in multi-objectives. The framework has its own object oriented with their classes built for
multi-objective problems (MOPs), and sharing their objects with complements to execute the
MOPs and comparing them with different techniques and algorithms. JMetal provides many
EAs to evaluate the fitness value of the feasible solutions in large search spaces. jMetal is built
on base object oriented classes (SolutionSet, Solution, Variable, etc.) and their operations are
intuitive, making it easy to understand and use. It is also easy to extend this package by
adding new features, classes, functions in order to be used with the existing algorithms. The
UML diagram below is a simplified version of the jMetal classes:

Figure 3.4: UML Class Diagram of jMetal [23]

28 Chapter 3. Proposed Cloud Task Scheduling Framework

3.3.2 CloudSim

CloudSim [15] is a framework designed for customers cloud and software’s products in order
to test their environments and applications before deploying them in real environments. That
means this simulation is used to test environments by controlling variables. The cloud com-
puting with all tools and methods aims to make sure the technology used is secure, available,
sustainable, scale-able without any errors or issues. When we repeat the test and methodol-
ogy used in a specific time, all of these goals aim at serving the evaluation of algorithms and
applications in order to reduce the testing costs in the cloud computing technology.

CloudSim can estimate the resources that will be used and how the tasks can be dis-
tributed. It can tune the performance for the network. Using this Package can help us to
calculate the cost of scale ability for data centers, and compute the infrastructure services
and their applications. This means that CloudSim supports modeling and simulation such as
the large scale cloud computing data centers simulation of virtualized server hosts, with cus-
tomize policies for provisioning host resources to virtual machines, application containers,
computational resources, data center network topologies and message-passing applications,
federated clouds, dynamic insertion of simulation elements, stop, and resume of simulation,
support for user-defined policies for allocation of hosts to virtual machines and policies for
allocation of host resources to virtual machines.

Figure 3.5: CloudSim Framework [15]

3.3. Existing Tools 29

3.3.3 WorkflowSim

WorkflowSim [12] is a toolkit based on CloudSim [15]. WorkflowSim was built in order to
support the workflow simulation level. It is combined with Directed acyclic graph (DAG) to
support both dynamic and static workflow schedulers. The DAG file could be a balanced or
unbalanced structure [5] as Figure 3.6. Therefore, WorkflowSim has some algorithms that
support their modules functions and tools as follows:

Workflow Schedulers: which consists of many algorithms such as first come first serve
scheduling algorithm, data aware scheduling algorithm, minimum completion schedul-
ing algorithm, maximum completion time scheduling algorithm, round robin schedul-
ing algorithm and static scheduling algorithm.

Workflow Planner: which is able to bind the tasks to their resource if available or not, that
means this components is a global version for optimization algorithms instead of local
Workflow Schedulers in WorkflowSim.

Task Clustering Algorithms: which is used for run-time based algorithms and data-oriented
algorithms.

Workflow for fault tolerant clustering: which has algorithms with parameters used directly
to learn from the traces of real executions.

WorkflowSim: has a lot of components created to solve many problems. These compo-
nents are used in to find solutions for a specific problem not all. However, some of
components such as

Workflow mapper: are used to read the data sets text and DAG files, and Workflow Engine
is used to manage and create tasks, also, the Clustering engine is created to deal with
dependency and the parents of each task in order to guarantee that the incoming task
can be executed. Failure Generator is a component that is used to explore the task when
it fails and after the last component is collected a failure record is returned back to the
clustering Engine to adjust the scheduling strategies dynamically. This study takes a
look at Workflow Scheduler, this component used for matching a task to a worker node
and assign tasks to multiple virtual machines based on the user selection of each node.
Based on this component the logarithms above were built, therefore, we will use the
genetic algorithms to solve the same problems in different way.

30 Chapter 3. Proposed Cloud Task Scheduling Framework

Figure 3.6: Directed Acyclic Graph Structure [71]

Figure 3.7: WorkflowSim Framework [12].

The Proposed Cloud Task Scheduling Framework shows our work and how we will im-
plement this proposal to conduct our experiments and get significant results. The next chapter
shows the setup environments and setting the existing tools and our framework and data set
used in this study.

31

Chapter 4

Experimental Setup

We design the experiment to study the impact of MOEAs on selecting the best optimal so-
lution for task scheduling. Thus, we selected hundreds of tasks with their characteristics,
and sets of resources for VMware with their characteristics provided by CloudSim. Then,
we implemented the problem using Java framework. After that, we investigated the MOEA
solutions and calculated the impact of this selection.

4.1 Creating Tasks and Virtual Machines

To conduct this study we define the VMwares, the tasks and the problem that has to be
presented using GA with quality indicator as follows:

• The CloudSim release version is 3.0, jMetal 5.0 and WorkflowSim 1.1.0.

• We created tasks and each task had attributes as follows: task ID; task size; task length;
file type for task (input or output) and how many CPUs required for executing this task
(Task CPU). The attributes of tasks will be read as into CloudSim as shown in Figure
4.1:

Figure 4.1: Reading Tasks and Attributes for Simulation

32 Chapter 4. Experimental Setup

• We created virtual machines (VMs), each having attributes as follows: VM ID; ma-
chine name, million instructions per second (MIPS); image VM size (size); vm mem-
ory (RAM); the network bandwidth (BW); number of CPUs (pesNumber). The at-
tributes of virtual machines will be created as as shown in Figure 4.2:

Figure 4.2: Creating VMware on the Data Center

• We used nonidentical VMs too, using the equations below:

mips[i] = mips[i] + 50.

ram[i] = ram[i] + 256.

bw[i] = bw[i] + 10.

(4.1)

• We created VMs on data center. Each data center has attributes as follows: Ram,
Storage, bandwidth (BW), million instructions per second (MIPS) and the host id.

• The results of simulation testing tasks and VMs are shown in Figure 4.3.

Figure 4.3: Cloud Simulation Test

4.2 Solution Representation

We represented the problem for the GA, and the solution type is binary. The number of bits
created based on Equation 4.2 and demonstrated in Figure 4.4. Each four bits represent one
VMware, and the value of these bits is the VMware ID.

4.3. Stopping Condition 33

Figure 4.4: Resource Allocation for Problem as GA in a binary set

NumberOfbits = (logNumberOfVMs) ∗ (NumberOfTasks) (4.2)

4.3 Stopping Condition

When Metaheuristic Algorithms are compared, different options exist for the stopping con-
dition. Most studies assign a maximum number of fitness evaluations, and the algorithms
are stopped once that number is reached. Some studies choose to stop the search once the
solutions stop improving by much. We choose a maximum time for stopping the algorithms,
for tow reasons: First, different algorithms take different amounts of time to reach maximum
evaluations, and thus the comparison would be unfair. Second, real time is an important fac-
tor for the end user (i.e. the decision maker) as they wait for the algorithm to provide them
with useful options that they can use.

We created a new variable called stop condition, to be used in jMetal tool. A time condi-
tion will stop running algorithms according to the value assigned by the user.

4.4 Optimization Objectives

The objectives we aim to optimize simultaneously using the MOEAs are as follows:

• The first objective is to minimize the total execution time across all VMs. It is calcu-
lated using Equation 4.3.

NumberOfVMs∑
V m=0

NumberOfTasks∑
Task=0

FinishT ime− StartT ime (4.3)

• The second objective is to minimize the maximum execution time across all VMs. The
reason is that we would like to balance the task load across VMs. This objective is
calculated using Equation 4.4. .

max
VMs

NumberOfTasks∑
Task=0

FinishT ime− StartT ime (4.4)

34 Chapter 4. Experimental Setup

• The third objective is to minimize the number of virtual machines needed to execute the
task load. This represents the economic concern, which is absent from the traditional
workflow scheduling approaches.

4.5 Algorithm Settings

In this study, we compare 3 MOEAs, namely NSGA-II, MOCell and IBEA and two tra-
ditional WorkflowSim Algorithms (HEFT and DHEFT). We selected HEFT and DHEFT
algorithms because they aim at optimizing workflows in heterogeneous cloud environments.

The parameter settings we used for these algorithms are shown in Table 4.1.

Table 4.1: Workflow Optimization Algorithm Settings

Multi-Objective Algorithms • Stop Condition = 1 minute.

• Mutation = BitFlipMutation [13].

• Mutation Probability = 1.0 /Number of bits.

• Selection = Binary Tournament [53].

• Crossover = SinglePointCrossover.

• Crossover Probability = 0.70

WorkflowSim Algorithms • Planning Algorithm = No.

• Local Replica Catalog File System = Yes.

2.3 overheads Parameters = No.

2.4 Clustering = No.

• The three quality indicators were selected as follows: HV, Spread and IGD.

4.6 DataSet of Study

To conduct our study we use three workflow types: Montage, CyberShake [51], and Het-
erogeneous Earliest Finish Time (HEFT) dataset [69] in the first phase. In the second phase
(UIL) we only use Montage and CyberShake.

• Montage: is an application used to collect and create multiple images of the sky in
order to create a one large-scale of big images. It was used by (NASA/IPAC).

• CyberShake: it is a probability model application used for predicting the earthquake
hazard for a certain location or region.

The type structure workflows Montage and CyberShake are structure and unbalanced
structure respectively [5]. Based on these data sets types we start running our algorithms to
get results.

35

Chapter 5

Results

In our experiments we used the datasets for workflow with 100 tasks. The experiment has 4
major parts, in which the workflow tasks are assigned to 4, 8, 12 and 16 machines, respec-
tively. Within each part, we repeat the experiments for identical VMs versus non-identical
VMs.

Each algorithm is repeated for 30 independents runs, in order to get statistically signifi-
cant results.

We executed a long run for an optimizing phase without any errors to get the best Pareto
front for all Algorithms in WorkflowSim as a reference point to the MOEAs.

5.1 Comparing MOEAs with Traditional Algorithms

This section shows the results of running process when the user is out of the loop. We aim at
finding the best algorithms and best optimal solutions to execute the workflows. The results
will be compared to the exiting WorkflowSim approaches.

5.1.1 Solving for 4 Maximum VMs

Tables 5.1 and 5.2 show the median of the objective values for all five algorithms. The algo-
rithms are ordered according to the best performance in the first objective. The results show
that the three MOEAs (MOCell, IBEA, and NSGA-II) perform better than the WorkflowSim
algorithms on the first two objectives, while no algorithm was able to fit all tasks on less than
4 VMs from Cybershak and Montage workflow. For the third objective the MOEAs outper-
form HEFT and DHEFT. In one case, MOCell is able to fit all of the HEFT study workflow
on one virtual machine.

36 Chapter 5. Results

Table 5.1: 4 Identical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

MOCell 19776.25 1201.5 4

NSGA-II 20229.39 1037 4

IBEA 20508.92 1091 4

HEFT 24732.47 1295 4

DHEFT 25139.86 1789 4

HEFT_study

IBEA 381.61 64 2

NSGA-II 381.73 65 2

MOCell 381.84 68.5 2

HEFT 538.81 94 3

DHEFT 550.94 98 3

Montage

NSGA-II 3682.91 325 4

MOCell 3700 334 4

IBEA 3739.64 365 4

HEFT 6324.16 552 4

DHEFT 6575.98 668 4

TXT: Total Execution Time (Millisecond).
VMTXT: Total Execution Time for Virtual Machine (Millisecond).
Vm_Used: Number of Virtual Machines Used.

5.1. Comparing MOEAs with Traditional Algorithms 37

Table 5.2: 4 NonIdentical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

IBEA 19175.3 933 4

NSGA-II 19391.67 1053 4

MOCell 19451.81 968.5 4

DHEFT 23512.61 1650 4

HEFT 29923.46 1852.5 4

HEFT_study

MOCell 363.17 117 1

NSGA-II 363.33 62.5 2

IBEA 375.74 55 3

HEFT 471.56 79.5 3

DHEFT 482.21 76.5 3

Montage

NSGA-II 3414.72 265 4

MOCell 3502.65 305 4

IBEA 3586.1 339 4

DHEFT 4657.12 499 4

HEFT 5565.81 505.5 4

5.1.2 Solving for 8 Maximum VMs

Tables 5.3 and 5.4 show the median results of three objective values for all the five algorithms.
The three MOEAs (MOCell, IBEA, and NSGA-II) perform better than the WorkflowSim
algorithms on the two objectives, also MOCell and NSGA-II are able to fit all tasks on less
than 8 VMs whether identical or non-identical.

38 Chapter 5. Results

Table 5.3: 8 Identical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

IBEA 20492.86 828.5 7

NSGA-II 21054.37 663 7

MOCell 21329.53 727 7

HEFT 24949.64 711 8

DHEFT 25576.87 1375.5 8

HEFT_study

IBEA 381.88 67 2

NSGA-II 382.22 64 2

MOCell 429.16 60.5 3

HEFT 488.73 71 5

DHEFT 496.77 68 5

Montage

NSGA-II 4151.3 237 7

MOCell 4258.28 245 8

IBEA 4520.13 237 8

DHEFT 5663.07 393 6

HEFT 6257.87 305 8

5.1. Comparing MOEAs with Traditional Algorithms 39

Table 5.4: 8 NonIdentical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

MOCell 19865.94 659 7

NSGA-II 19972.08 884.5 7

IBEA 21544.23 718 8

DHEFT 23544.97 1427 8

HEFT 26781.49 784.5 8

HEFT_study

NSGA-II 363.66 60 2

IBEA 363.71 59 2

MOCell 366.04 49 3

DHEFT 443.16 61 4

HEFT 460.96 68.5 4.5

Montage

MOCell 3904.81 190.5 7.5

IBEA 4149.58 224 8

NSGA-II 4241.06 252 7.5

DHEFT 4861.69 317.5 7

HEFT 5611.3 271.5 8

5.1.3 Solving for 12 Maximum VMs

Tables 5.5 and 5.6 show the median results of three objective values for all the five algorithms.
The three MOEAs (MOCell, IBEA, and NSGA-II) perform better than the WorkflowSim
algorithms on the first two objectives. Also, IBEA and NSGA-II are able to fit all tasks
on less than 12 VMs. On the other hand, the MOEAs still perform better than all in three
objectives if these machines were identical or non-identical.

40 Chapter 5. Results

Table 5.5: 12 Identical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

NSGA-II 20890.77 682 10

IBEA 20997.87 642 10

MOCell 21525.05 626 10

DHEFT 23919.16 1148.5 10

HEFT 25872.48 559 12

HEFT_study

IBEA 381.89 64 2

NSGA-II 382.52 64 2

MOCell 395.66 61 2.5

HEFT 456.85 68 5

DHEFT 461.36 61 6

Montage

NSGA-II 4082.79 204.5 9.5

MOCell 4161.11 190 10

IBEA 4199.94 195 10

DHEFT 5526.05 310.5 9

HEFT 5732.66 214 11

5.1. Comparing MOEAs with Traditional Algorithms 41

Table 5.6: 12 NonIdentical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

MOCell 20504.71 645 10

IBEA 20580.38 659 9

NSGA-II 20680.59 594 10

DHEFT 22093.07 1045.5 9.5

HEFT 24751.09 527.5 12

HEFT_study

IBEA 363.54 60.5 2

NSGA-II 363.87 60 2

MOCell 364.26 59 2

DHEFT 428.42 55.5 5

HEFT 435.82 66 5

Montage

NSGA-II 3920.37 211.5 8.5

Ibea 3927.58 188 10

MOCell 3965.77 207 9

DHEFT 4829.67 262 9

HEFT 5696.61 208.5 11

5.1.4 Solving for 16 Maximum VMs

Tables 5.7 and 5.8 show the median results of three objective values for all five algorithms.
Two MOEAs (MOCell and IBEA) perform better than the WorkflowSim algorithms on the
first objective, and MOEAs are able to fit all tasks on third objective and execute workflow on
less than 16 VMs. On the other hand, the DHEFT does not perform better than MOEAs algo-
rithms even though it outperforms in the third objective. The cause root of this outperform,
all tasks is that it is able to execute in less than 16 machines, but if we increase the running
time to be more than one minutes for MOEAs algorithms, then the MOEAs will outperform
workflowsim algorithms in this objective. Increasing the time needed because we need more
crossover and mutation and solutions for a long chromosome.

42 Chapter 5. Results

Table 5.7: 16 Identical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

NSGA-II 21711.13 488 13

MOCell 22251.09 511 13

IBEA 22539.92 513.5 13

DHEFT 22550.03 926.5 10

HEFT 24988.37 449 16

HEFT_study

MOCell 381.9 65 2

NSGA-II 383.39 58 2.5

IBEA 383.52 60.5 2.5

HEFT 428.41 66 5

DHEFT 434.16 60 5

Montage

IBEA 4353.78 155 13

MOCell 4429.54 155 13

NSGA-II 4441.52 157.5 13

DHEFT 4940.73 251 11.5

HEFT 5435.33 164 14

5.1. Comparing MOEAs with Traditional Algorithms 43

Table 5.8: 16 NonIdentical Virtual Machines

Workflow AlgName TXT VMTXT Vm_Used

CyberShake

IBEA 20921.98 557 13

MOCell 21089.8 548.5 13

NSGA-II 21126.57 497.5 13

DHEFT 22426.16 1082 10.5

HEFT 23231.99 418 16

HEFT_study

MOCell 363.73 60.5 2

NSGA-II 368.68 47 3

IBEA 371.43 45 3

DHEFT 413.62 55 5

HEFT 417.27 64 5

Montage

MOCell 4244.13 167 13

IBEA 4389.7 170.5 13

DHEFT 4438.24 188 11

NSGA-II 4531.21 172 12

HEFT 5253.99 157 15

5.1.5 Pareto Front plots

The common decision makers are interested in finding the best optimal solution among al-
ternative solutions for different objectives. As researchers we are interested in showing the
results of our approach to decision makers to fit their interest. The figures below show scatter
plots for all optimal solutions we get for three objectives. We make 2D plots with 2 objectives
only to demonstrate how the objectives trade-off against each other.

44 Chapter 5. Results

Figure 5.1: CyberShake Workflow Total Execution Time vs Total Virtual Machine Execution
Time.

Figure 5.1 shows the results of Pareto fronts for a balanced structure workflow. Balanced
workflow structure means the tasks that could be executed in parallel machines. Thus, if we
increase the number of virtual identical machines the total execution time for workflow on
those machines will decrease. For non-identical machines the MOAEs tend to allocate tasks
to the highest spec machines and minimizing the total execution time. The distribution of
Pareto Fronts shows that MOAEs have the best results, and all solutions are close together
for both objectives. Thus, giving us a consistency in the solutions for the same region instead
of scattered solutions for WorkflowSim algorithms.

5.1. Comparing MOEAs with Traditional Algorithms 45

Figure 5.2: HEFTStudyWorkF lowTotalExecutionT imevsTotalV irtualMachineExecutionT ime.

Figure 5.3: Montage WorkFlow Total Execution Time vs Total Virtual Machine Execution
Time.

Figures 5.2 and 5.3) show the results of Pareto fronts for HEFT study and Montage work-
flows. The distribution of Pareto Fronts shows that MOAEs (NSGA-II, IBEA, and MOCell)
produce minimal objective values, while HEFT and DHEFT produce higher values.

Figure 5.4: CyberShake Workflow Virtual Machines Used vs Total Execution Time.

46 Chapter 5. Results

Figure 5.5: HEFT_study Workflow Virtual Machines Used vs Total Execution Time.

Figure 5.6: Montage Workflow Virtual Machines Used vs Total Execution Time.

The results of Figures 5.6, 5.5, and 5.4 show the consistency in the solutions provided
by MOAEs for the same number of machines used and gives the best results for the first
objective, whether the workflow type is a balanced or non-balanced structure.

5.1. Comparing MOEAs with Traditional Algorithms 47

Figure 5.7: Non-Identical 12 Virtual Machines Box Plot for CyberShake Workflow.

The Box Plots in Figure 5.7 show the median of algorithms indicated by the line, and the
outlier values for three objectives. The median of IBEA has better results for all objectives.
There is also no outlier values. That means IBEA gives consistent results for our objectives.
DHEFT was able to work with the same machine but it wasn’t able to optimize the load
balancing between machines (i.e. the second objective). MOCell results were close but not
better than IBEA.

Figure 5.8: Non-Identical 4 Virtual Machines Box Plot for HEFT-study Workflow.

The Box Plot in Figure 5.8 presents small workflow on four non-identical machines.
MOCell is able to handle the workflow in one machine given minimum total execution time,
thus, it still has the best results among them in two objectives for high workload in a cloud
computing environment.

48 Chapter 5. Results

Figure 5.9: Non-Identical 8 Virtual Machines Box Plot for Montage Workflow.

The median of distribution values in Box Plot 5.9, clearly detects how the values are close
together, also, the marginal values for MOEAs are not too big like DHEFT or HEFT.

5.2 User-In-the-Loop

This section details the results of running process when the user is involved in the frame-
work, i.e. User-In-the-Loop (UIL) approach. The following are changes in our experiment
to execute and implement UIL in order to get the solutions of our problem: the data sets used
are CyberShake and Montage, these data sets have 100 tasks executed on cloud environment
that has 8 and 12 machines. The stop condition is set to two minuets. The user is able to
stop running the process before that time, and 5 minutes if the user is out of process. Each
algorithm is run 10 independent times. We selected NSGA-II algorithm as a representative of
meta-heuristic algorithms, since it is the most popular MOEA, and it produced comparable
results with MOCell and IBEA.

The tables below show the median of three objective results when the time condition set
to five minutes and the user is out of process, and two minutes when the user is in the loop.

Table 5.9: Results for User Out of the Loop

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 20322.24 681.00 8

12 20971.72 643.50 11

Montage
8 3893.99 199.00 8

12 4176.54 192.00 11

5.2. User-In-the-Loop 49

Table 5.10: Results for User In the Loop

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 20035.66 668.00 8

12 21693.33 671.00 11

Montage
8 3887.62 200.50 8

12 4373.36 202.00 11

The tables below show the median of three objective results for all non dominated points
when the time condition set to five minutes and the user is out of process, and two minutes
when the user in the loop.

Table 5.11: Non Dominated Points when The User is Out of Process

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 19809.29 731.00 8

12 20392.63 587.00 11

Montage
8 3764.43 191.50 7

12 3992.69 180.00 11

Table 5.12: Non Dominated Points when The User is the Process

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 19779.94 592.00 8

12 20337.15 606.50 10.5

Montage
8 3715.08 188.00 8

12 3943.89 178.00 11

The results of the second phase show that when the user is in and out of the search process
in the algorithm. The results of table 5.9 represent the median of Pareto fronts calculated for
the three objectives, where the stop condition time was set to five minutes and the user out of
process. Then we generate the non-dominated points 5.11 in order to calculate the median of
these points. On the other hand, we repeated the same procedure when the user-in-the-loop,
but we set the stop condition time to two minutes as shown in the tables 5.10 and 5.12. We
used two minutes as the stop condition time because the user-in-the-loop was able to guide the
search process for the purpose of attaining the most favorable and efficient solution, thereby

50 Chapter 5. Results

decreasing the stop condition time from five minutes to two minutes. The user-in-the-loop
results in two minutes outperforms the user-out-of-the-loop process for both data sets. Thus,
the results of the user-in-the-loop in two minutes is competitive to the user-out-of-the-loop
process in five minutes.

We also set the stop condition times equal to each other for both user-in-the-loop and
user-out-of-the-loop. The stop condition time was set to a total of five minutes. As shown
in tables 5.13 and 5.14, the median of the three objective points validate that the user-in-the-
loop guided the search process to outperform the user-out-of-the-loop when they both were
set to an equal stop condition time of five minutes.

Table 5.13: The User Involves in the framework processes five minutes

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 19827.62 614 8

12 20749.19 622 11

Montage
8 3747.98 186.00 8

12 4094.69 180 11

Table 5.14: Non Dominated Points when The User is the Process

Workflow TotalVm TXT VMTXT Vm_Used

CyberShake
8 19707.4 609 8

12 20167 588 10

Montage
8 3706.58 169 8

12 3941.83 170.50 10.5

The figures below show the Pareto fronts of three objective results for all and non domi-
nated points when the time condition set to two minutes and the user in the loop against five
minutes when the user out of procures.

Figure 5.10 present eight machines and non identical with CyberShake data set, and
Figure 5.11 shows the same for Montage workflows:

5.2. User-In-the-Loop 51

Figure 5.10: CyberShake workflow Non-Identical 8 Virtual Machines With and without UIL

Figure 5.11: Montage workflow Non-Identical 8 Virtual Machines With and without UIL

The figures below present twelve machines and non identical with CyberShake data sets
and Montage workflows:

Figure 5.12: CyberShake Workflow and Non-Identical 12 Virtual Machines With and without
UIL

52 Chapter 5. Results

Figure 5.13: Montage workflow Non-Identical 12 Virtual Machines With and without UIL

In the previous tables, we discussed the results of user-in-the-loop in five minutes abso-
lutely will outperform the results when the user out of the process. The Figures 5.10,5.11,5.12
and 5.13 presents the three objectives when the user-in-the-loop and the user out-of-process.
The solutions with the user-in-the-loop in two minutes are closed to be optimal as a user
out of the loop in five minutes for both workflow data types even the virtual machines are
non-identical.

In Appendix A, we demonstrate the graphical interface that allows the user to interact
with the search process.

5.3 Discussion

This section represents the behavior of results for the figures and tables above. We will also
discuss the results of the box plots above and why the three MOEAs (MOCell, IBEA, and
NSGA-II) outperform traditional algorithms. We will discuss why they are better than the
WorkflowSim algorithms in the three objectives for all Workflow data types, for instance,
whether these machines created are identical or non-identical.

The purpose of the second objective is to prevent the overload onto one machine, and
achieve a balanced loading between machines that are available at cloud environment. We
increased the number of tasks assigned on to the virtual machines which is less than the
number of total virtual machines. Hence, the total time for the second objective will be
increased with the minimum total execution time per one machine. The best evaluation of
results is a comparison between the algorithms when there is an increased workload on the
virtual machine resources. The results of Table 5.1 show that all machines were used for
both workflows CyberShake and Montage because the number of tasks were too large, and
because of this we needed to use all four machines. However, in reality we needed more than
four machines for this scenario.

The robust MOEAs start looking to minimize the first objective and this can be done by
optimizing the distribution tasks to machines available in the environment where all machine
resources are identical or nonidentical. Thus, in the unbalanced structure the MOEAs looks

5.3. Discussion 53

to execute all dependent tasks on the same machine, if we increased the stop condition time.
As we see, the difference between MOEAs and WorkflowSim is too large in the results of the
first objective. The results of Table 5.2 show MOEAs seeking to find the highest specification
of machines available in order to assign multiple tasks to this machine, for example, the
number of tasks assigned to D machine should be more than the tasks assigned to machine
C or B, and also more than the same machine in the initial solution. Clearly, for workflow
HEFT_study, the MOEAs outperform the algorithms in WorkflowSim in three objectives
based upon the results in the two tables, but we noticed that the HEFT outperforms DHEFT,
if the virtual machines are identical. These results were not expected because the DHEFT
algorithm should have better results and outperform HEFT.

In order to optimize schedule tasks and test our experiment for the third objective, we
needed to increase the number of virtual machines from four machines to eight machines
and test them. By increasing this number, the total execution time per machine will decrease
because the number of total tasks will also decrease because we distributed the tasks to more
machines. We also expect to minimize the number of machines per workflow, thus, reduc-
ing the cost of usage of resources available in the cloud environment. The results of Tables
5.3 and 5.4, clearly show that we are able to minimize the number of virtual machines for
HEFT_study workflow. In addition, we were able to minimize the number of machines.
Therefore, MOEAs gives better results and is more efficient than traditional algorithms. The
results of Table 5.3 show that the DHEFT algorithm outperforms MOEAs in the third objec-
tive if there is an unbalanced workflow, but it failed in the two remaining objectives. Hence,
the DHEFT algorithm is of no use because of its limited efficiency with the remaining two
objectives. The results of Tables 5.5, 5.6, 5.7 and 5.8 show the MOEAs still outperform tradi-
tional algorithms. The results in tables 5.6 and 5.7 show DHEFT exceeding the MOEAs for
the first objective in certain cases, but that does not mean that DHEFT outperforms MOEAs;
because MOEAs outperform DHEFT in the two remaining objectives.

The chromosome becomes very long when the number of virtual machines is set to six-
teen machines and the number of tasks is set to one hundred. In order to outperform DHEFT
we need to increase the stop condition time to be more than one minute for larger tasks and
more machines, then we got better results than DHEFT for all objectives.

According to the results of tables and figures, we can conclude that the performance of
the MOEAs consistently outperforms than traditional algorithms in the three objectives in
cloud computing environments. These results are also observed when the machines created
are identical or non-identical, and the workflow type structures are balanced or non-balanced.

The results in this study are highlighted as follows:

(a) Using Meta-heuristic or evolutionary algorithms is a viable method for scheduling
tasks of workflow on cloud computing platforms. The traditional methods and ap-
proaches try to solve the scheduled tasks of the workflow using one or two objectives
at most. Using MOEAs, we are able to solve the task scheduling problem for three
objectives, including the economic concern of saving on utilized VMs. We arrive at
an optimal schedule within a reasonable time. Using MOEAs for task scheduling in
cloud computing reduces the overall execution time while consuming the least cloud

54 Chapter 5. Results

resources which allow the decision maker to save on cloud resources without detriment
to the overall task run-time.

(b) The length of the chromosome can impact the results of evolutionary algorithms. When
we have big chromosomes the algorithms need more time to get the better results be-
cause there is a lot of crossover and mutation to generate new solutions. However, more
time is needed to execute big workflows using the existing tools. Thus, the MOEAs
still generate better solutions for the same run-time cost.

(c) Impact of the user-in-the-loop on results: The user has experience about workflow
tasks and the environment he has, even if this environment is not a cloud computing
environment. So, we aim at utilizing this experience to reduce the algorithmic search
time. This give us better solutions when the User is in the loop. This happen because
we exclude uninteresting solutions and allow the algorithms to evolve interesting solu-
tions only.

5.4 Limitations of the Study

We got our results from analyzing the data based on settings, parameters, and procedures
that are followed throughout the study. There is a possibility that if the parameters change
the results might change for all algorithms. We used the same properties for all CloudSim
entities (such as data-center, hosts, Storage, and number of (users) and the same parameters
settings for all meta-heuristic algorithms (such as selection, mutation and crossover type and
probability). We cannot identify the expected behavior of these algorithms if their properties
change, and how the changing of these properties could affect our objectives.

The Meta-heuristic start from initial population set randomly, that means this can affect
our results too. to mitigate this effect, we repeated each algorithm 30 independent times for
each dataset workflow, and that enables us to accept the results in spite of the randomness
inherent in the algorithms.

The study used jMetal and WorkflowSim simulation in cloud computing. Our results
may not represent the results in real life environment. The simulation works with specific
tasks assigned to specific Virtual Machines. So, in real life environment we need to consider
other variables such as other tasks running on the same machine, in addition to network and
cloud computing structure and topology.

55

Chapter 6

Conclusions and Future Work

Optimizing the efficiency of task scheduling in cloud computing continues to be an essential
job for system administrators. In this study we presented the importance of solving the task
workflow problem and the research directions in that area. Our approach was to redefine
the problem as a multi-objective optimization problem with three objectives and the use of
multi-objective evolutionary algorithms (MOEAs) to present the user with Pareto efficient
solutions to choose from. The results show the robustness of MOEAs compared to tradi-
tional algorithms in WorkflowSim for cloud computing environments. Specifically, MOCell
and NSGA-II produced the best results in the studied experiments according to Pareto front
quality metrics.

Furthermore, we introduced an approach for involving users in the optimization process
that allows the decision maker to focus on a preference area within the objective space and
focus the computation power on that area. The results of user-in-the-loop show that the
MOEA has the ability to generate solutions close to the optimal Pareto Front and to distribute
solutions uniformly through the non-dominated solution set.

As future work, workflow scheduling optimization algorithms in cloud computing still
need more effort and time to reduce iteration time from 1 minute to 30 seconds or less. Also,
we are interested in covering more Workflow types and larger data sets, and experimenting
with different parameter settings to arrive at the best parameter tuning for our problem.

56

Appendix A

Appendix

A.1 UIL Test Case

This section presents a demo for our experiments in details. The UIL means the user is able
to start the framework. the user has the ability to choose between two running modes the user
in or out of the search process in the framework, based on this running mode we will start
executing the framework.

Figure A.1: UIL Running Mode.

The user will be able to start UIL or stop the running process through GUI if the running
mode user is in the search process is running. The image below appears if the user presses
on "Start UIL" button through GUI the results are: a user able to cancel this operation or
interrupt it; the population will be created to the user and available to create the visualization
of this population.

A.1. UIL Test Case 57

Figure A.2: Start UIL Process

The user has to select the region of his interest according to the decision of the running
mode at the beginning of the process, So, this selection should be mandatory to end user and
no way to exist without his selection. The frameworks will calculate the selection time and
converts this time to actual running time.

Figure A.3: Check the Input of Selection from User

Figure A.4: User doesn’t select the region

The button start data fetcher is used to read the population of solutions at the interruption
point and prepares the data to be ready for drawing through "Draw Chart" button, also, the

58 Appendix A. Appendix

next chart button enables the user to check and draw the objectives. The user can drag and
drop a rectangle to select all the region of his interest.

Figure A.5: Read and Draw the Population set

A.1. UIL Test Case 59

Figure A.6: Next chart from Population set

The button "Done" is used to create the region of interest of the user, and get all points
from the population in that region. When this is done the algorithm will check the input file
and read the values from a user selection to use them. the "Stop Cond" button is used to stop
the execution process of algorithms.

60 Appendix A. Appendix

Figure A.7: Creates the Region of Interest from Population set

A.1. UIL Test Case 61

Figure A.8: UIL Stop Condition

The UIL test case in this study presents how the user will be able to control and create the
region of interest through GUI. According to our design and workflow to solve the problem
in cloud computing, we expect to get significant results compared to WFS algorithms, and
significant results when UIL and these results will outperform the results when the user is out
of the process.

62

Bibliography

[1] Ajith Abraham and Lakhmi Jain. “Evolutionary multiobjective optimization”. In: Evo-

lutionary Multiobjective Optimization. Springer, 2005, pp. 1–6.

[2] Ram Bhushan Agrawal, K Deb, and RB Agrawal. “Simulated binary crossover for
continuous search space”. In: Complex systems 9.2 (1995), pp. 115–148.

[3] Victor Alves Ribeiro. “Multi-Objective Model Selection for Unmanned Aerial Ve-
hicles Automatic Target Recognition Systems”. PhD thesis. May 2017. DOI: 10.
13140/RG.2.2.35499.85283.

[4] Hamid Arabnejad and Jorge G Barbosa. “List scheduling algorithm for heterogeneous
systems by an optimistic cost table”. In: IEEE Transactions on Parallel and Dis-

tributed Systems 25.3 (2014), pp. 682–694.

[5] Yalda Aryan and Arash Ghorbannia Delavar. “A bi-objective workflow application
scheduling in cloud computing systems”. In: Int J Integr Technol Educ 3 (2014),
pp. 51–62.

[6] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Evolutionary computation

1: Basic algorithms and operators. Vol. 1. CRC press, 2000.

[7] Anju Bala and Inderveer Chana. “A survey of various workflow scheduling algorithms
in cloud environment”. In: 2nd National Conference on Information and Communica-

tion Technology (NCICT). sn. 2011, pp. 26–30.

[8] Sanjoy K Baruah. “The non-preemptive scheduling of periodic tasks upon multipro-
cessors”. In: Real-Time Systems 32.1-2 (2006), pp. 9–20.

[9] Christian Bierwirth and Dirk C Mattfeld. “Production scheduling and rescheduling
with genetic algorithms”. In: Evolutionary computation 7.1 (1999), pp. 1–17.

[10] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. “Scheduling subject to
resource constraints: classification and complexity”. In: Discrete Applied Mathematics

5.1 (1983), pp. 11–24.

[11] Junwei Cao et al. “Gridflow: Workflow management for grid computing”. In: Cluster

Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM Interna-

tional Symposium on. IEEE. 2003, pp. 198–205.

[12] Weiwei Chen and Ewa Deelman. “Workflowsim: A toolkit for simulating scientific
workflows in distributed environments”. In: E-science (e-science), 2012 IEEE 8th In-

ternational Conference on. IEEE. 2012, pp. 1–8.

https://doi.org/10.13140/RG.2.2.35499.85283
https://doi.org/10.13140/RG.2.2.35499.85283

BIBLIOGRAPHY 63

[13] Francisco Chicano et al. “Fitness Probability Distribution of Bit-flip Mutation”. In:
Evol. Comput. 23.2 (June 2015), pp. 217–248. ISSN: 1063-6560. DOI: 10.1162/
EVCO_a_00130. URL: http://dx.doi.org/10.1162/EVCO_a_00130.

[14] Karim Chichakly. Multiobjective Optimization. [Online]. Available: blog.iseesystems.
com/modeling-tips/multiobjective-optimization/. 2018.

[15] CloudSim. CloudSim: A Framework For Modeling And Simulation Of Cloud Comput-

ing Infrastructures And Services. [Online]. Available: http://www.cloudbus.
org/cloudsim/. 2016.

[16] David Corne, Joshua Knowles, and Martin Oates. “The Pareto Envelop-based Selec-
tion Algorithm for Multi-Objective Optimization”. In: vol. 1917. Sept. 2000, pp. 839–
848. DOI: 10.1007/3-540-45356-3_82.

[17] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and exploitation in
evolutionary algorithms: A survey”. In: ACM Computing Surveys (CSUR) 45.3 (2013),
p. 35.

[18] Altino Dantas et al. “Interactive software release planning with preferences base”.
In: International Symposium on Search Based Software Engineering. Springer. 2015,
pp. 341–346.

[19] Lawrence Davis. “Genetic algorithms and simulated annealing”. In: (1987).

[20] Kalyanmoy Deb and Abhishek Kumar. “Interactive evolutionary multi-objective op-
timization and decision-making using reference direction method”. In: Proceedings

of the 9th annual conference on Genetic and evolutionary computation. ACM. 2007,
pp. 781–788.

[21] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. “Multi-objective optimiza-
tion”. In: Decision Sciences: Theory and Practice. CRC Press, 2016, pp. 145–184.

[22] Kalyanmoy Deb et al. “A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II”. In: International Conference on Parallel Prob-

lem Solving From Nature. Springer. 2000, pp. 849–858.

[23] Juan J. Durillo and Antonio J. Nebro. “jMetal: A Java framework for multi-objective
optimization”. In: Advances in Engineering Software 42 (2011), pp. 760–771. ISSN:
0965-9978. DOI: DOI:10.1016/j.advengsoft.2011.05.014. URL: http:
//www.sciencedirect.com/science/article/pii/S0965997811001219.

[24] Russ C Eberhart, James Kennedy, et al. “A new optimizer using particle swarm the-
ory”. In: Proceedings of the sixth international symposium on micro machine and hu-

man science. Vol. 1. New York, NY. 1995, pp. 39–43.

[25] Hesham El-Rewini and Ted G. Lewis. “Scheduling parallel program tasks onto arbi-
trary target machines”. In: Journal of parallel and Distributed Computing 9.2 (1990),
pp. 138–153.

[26] Ian Foster et al. “Cloud computing and grid computing 360-degree compared”. In:
Grid Computing Environments Workshop, 2008. GCE’08. Ieee. 2008, pp. 1–10.

https://doi.org/10.1162/EVCO_a_00130
https://doi.org/10.1162/EVCO_a_00130
http://dx.doi.org/10.1162/EVCO_a_00130
blog.iseesystems.com/modeling-tips/multiobjective-optimization/
blog.iseesystems.com/modeling-tips/multiobjective-optimization/
http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
https://doi.org/10.1007/3-540-45356-3_82
https://doi.org/DOI: 10.1016/j.advengsoft.2011.05.014
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219

64 BIBLIOGRAPHY

[27] D.C. Gabriner et al. System and method for genetic algorithm scheduling systems.
US Patent 5,848,403. 1998. URL: https://www.google.com/patents/
US5848403.

[28] Alex Gantman et al. “Scheduling real-time tasks in distributed systems: A survey”. In:
(1998).

[29] Michael R Garey and Ronald L. Graham. “Bounds for multiprocessor scheduling with
resource constraints”. In: SIAM Journal on Computing 4.2 (1975), pp. 187–200.

[30] Hui Liu He Guo Guan Wang Yuxin Wang. “HSIP: A Novel Task Scheduling Al-
gorithm for Heterogeneous Computing”. In: Scientific Programming 2016.3676149
(2016), p. 11. URL: http://dx.doi.org/10.1155/2016/3676149.

[31] Lizheng Guo et al. “Task scheduling optimization in cloud computing based on heuris-
tic algorithm”. In: Journal of Networks 7.3 (2012), pp. 547–553.

[32] Irfan Habib et al. “Adapting scientific workflow structures using multi-objective op-
timization strategies”. In: ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 8.1 (2013), p. 4.

[33] Mark Harman and Bryan F Jones. “Search-based software engineering”. In: Informa-

tion and software Technology 43.14 (2001), pp. 833–839.

[34] Mark Harman and Afshin Mansouri. “Search based software engineering: Introduc-
tion to the special issue of the IEEE transactions on software engineering”. In: IEEE

transactions on Software Engineering 6 (2010), pp. 737–741.

[35] Je rey Horn, Nicholas Nafpliotis, and David E Goldberg. “A niched Pareto genetic al-
gorithm for multiobjective optimization”. In: Proceedings of the first IEEE conference

on evolutionary computation, IEEE world congress on computational intelligence.
Vol. 1. Citeseer. 1994, pp. 82–87.

[36] Jie Huang. “The Workflow Task Scheduling Algorithm Based on the GA Model in the
Cloud Computing Environment.” In: JSW 9.4 (2014), pp. 873–880.

[37] Pham Phuoc Hung et al. “Task scheduling for optimizing recovery time in cloud com-
puting”. In: Computing, Management and Telecommunications (ComManTel), 2014

International Conference on. IEEE. 2014, pp. 188–193.

[38] C-L Hwang and Abu Syed Md Masud. Multiple objective decision making—methods

and applications: a state-of-the-art survey. Vol. 164. Springer Science & Business
Media, 2012.

[39] Oscar H Ibarra and Chul E Kim. “Heuristic algorithms for scheduling independent
tasks on nonidentical processors”. In: Journal of the ACM (JACM) 24.2 (1977), pp. 280–
289.

[40] RK Jena. “Multi objective task scheduling in cloud environment using nested PSO
framework”. In: Procedia Computer Science 57 (2015), pp. 1219–1227.

[41] Azita Jooyayeshendi and Abbas Akkasi. “Genetic Algorithm for Task Scheduling in
Heterogeneous Distributed Computing System”. In: ().

https://www.google.com/patents/US5848403
https://www.google.com/patents/US5848403
http://dx.doi.org/10.1155/2016/3676149

BIBLIOGRAPHY 65

[42] Natallia Kokash. “An introduction to heuristic algorithms”. In: (Dec. 2018).

[43] C Mani Krishna and Kang G. Shin. “On scheduling tasks with a quick recovery from
failure”. In: IEEE Transactions on Computers 5 (1986), pp. 448–455.

[44] Neal Leavitt. “Is cloud computing really ready for prime time”. In: Growth 27.5
(2009), pp. 15–20.

[45] Longmei Li et al. “Multiobjective evolutionary algorithms based on target region pref-
erences”. In: Swarm and Evolutionary Computation 40 (2018), pp. 196–215.

[46] Longmei Li et al. “Preference incorporation to solve multi-objective mission planning
of agile earth observation satellites”. In: Evolutionary Computation (CEC), 2017 IEEE

Congress on. IEEE. 2017, pp. 1366–1373.

[47] Tianchi Ma and Rajkumar Buyya. “Critical-path and priority based algorithms for
scheduling workflows with parameter sweep tasks on global grids”. In: Computer Ar-

chitecture and High Performance Computing, 2005. SBAC-PAD 2005. 17th Interna-

tional Symposium on. IEEE. 2005, pp. 251–258.

[48] Bogdan Marculescu et al. “Tester Interactivity makes a Difference in Search-Based
Software Testing: A Controlled Experiment”. In: CoRR abs/1512.04812 (2015). URL:
http://arxiv.org/abs/1512.04812.

[49] Teena Mathew, K Chandra Sekaran, and John Jose. “Study and analysis of various task
scheduling algorithms in the cloud computing environment”. In: Advances in Comput-

ing, Communications and Informatics (ICACCI, 2014 International Conference on.
IEEE. 2014, pp. 658–664.

[50] Hitoshi Matsumoto and Yutaka Ezaki. “Dynamic resource management in cloud envi-
ronment”. In: Fujitsu Sci. Tech. J 47.3 (2011), pp. 270–276.

[51] Gaurang Mehta, Gideon Juve, and W Chen. “Workflow Generator”. In: confluence.

pegasus. isi. edu (2009). URL: https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator(Ðt’ÐřÑĆÐřÐ¿ÐśÑĂÐřÑL’ÐµÐ¡ÐÿÑŔ:

11.06.2016).

[52] Peter Mell and Tim Grance. “The NIST definition of cloud computing”. In: (2011).

[53] Brad L Miller, David E Goldberg, et al. “Genetic algorithms, tournament selection,
and the effects of noise”. In: Complex systems 9.3 (1995), pp. 193–212.

[54] Antonio J Nebro et al. “AbYSS: Adapting scatter search to multiobjective optimiza-
tion”. In: IEEE Transactions on Evolutionary Computation 12.4 (2008), pp. 439–457.

[55] Antonio J Nebro et al. “Extending the Speed-Constrained Multi-objective PSO (SMPSO)
with Reference Point Based Preference Articulation”. In: International Conference on

Parallel Problem Solving from Nature. Springer. 2018, pp. 298–310.

[56] Antonio J Nebro et al. “Mocell: A cellular genetic algorithm for multiobjective opti-
mization”. In: International Journal of Intelligent Systems 24.7 (2009), pp. 726–746.

http://arxiv.org/abs/1512.04812
https://confluence. pegasus. isi. edu/display/pegasus/WorkflowGenerator (дата обращения: 11.06. 2016)
https://confluence. pegasus. isi. edu/display/pegasus/WorkflowGenerator (дата обращения: 11.06. 2016)
https://confluence. pegasus. isi. edu/display/pegasus/WorkflowGenerator (дата обращения: 11.06. 2016)

66 BIBLIOGRAPHY

[57] Andrew J Page and Thomas J Naughton. “Dynamic task scheduling using genetic algo-
rithms for heterogeneous distributed computing”. In: 19th IEEE international parallel

and distributed processing symposium. IEEE. 2005, 189a–189a.

[58] Radu Prodan and Thomas Fahringer. “Dynamic scheduling of scientific workflow ap-
plications on the grid: a case study”. In: Proceedings of the 2005 ACM symposium on

Applied computing. ACM. 2005, pp. 687–694.

[59] Marjan Kuchaki Rafsanjani and Amid Khatibi Bardsiri. “A new heuristic approach for
scheduling independent tasks on heterogeneous computing systems”. In: International

Journal of Machine Learning and Computing 2.4 (2012), p. 371.

[60] Mustafizur Rahman, Srikumar Venugopal, and Rajkumar Buyya. “A dynamic critical
path algorithm for scheduling scientific workflow applications on global grids”. In: e-

Science and Grid Computing, IEEE International Conference on. IEEE. 2007, pp. 35–
42.

[61] Aurora Ramirez, Jose Raul Romero, and Christopher Simons. “A systematic review of
interaction in search-based software engineering”. In: IEEE Transactions on Software

Engineering (2018).

[62] Sartaj K Sahni. “Algorithms for scheduling independent tasks”. In: Journal of the

ACM (JACM) 23.1 (1976), pp. 116–127.

[63] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. “On the value of user prefer-
ences in search-based software engineering: a case study in software product lines”.
In: 2013 35th International Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 492–501.

[64] L.K. Sheng et al. “Multi-Objective particle swarm optimization algorithms – A leader
selection overview”. In: 15 (Aug. 2014), pp. 6–19. DOI: 10.5013/IJSSST.a.15.
04.02.

[65] Jerffeson Teixeira de Souza et al. “The human competitiveness of search based soft-
ware engineering”. In: Search Based Software Engineering (SSBSE), 2010 Second In-

ternational Symposium on. IEEE. 2010, pp. 143–152.

[66] Sobhanayak Srichandan, Turuk Ashok Kumar, and Sahoo Bibhudatta. “Task schedul-
ing for cloud computing using multi-objective hybrid bacteria foraging algorithm”. In:
Future Computing and Informatics Journal 3.2 (2018), pp. 210–230.

[67] Hiroyuki Tarumi. Workflow system for rearrangement of a workflow according to the

progress of a work and its workflow management method. US Patent 6,115,640. 2000.

[68] Jyoti Thaman and Manpreet Singh. “Green cloud environment by using robust plan-
ning algorithm”. In: Egyptian Informatics Journal 18.3 (2017), pp. 205–214.

[69] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. “Performance-effective and low-
complexity task scheduling for heterogeneous computing”. In: IEEE transactions on

parallel and distributed systems 13.3 (2002), pp. 260–274.

https://doi.org/10.5013/IJSSST.a.15.04.02
https://doi.org/10.5013/IJSSST.a.15.04.02

BIBLIOGRAPHY 67

[70] David A Van Veldhuizen and Gary B Lamont. Multiobjective evolutionary algorithm

research: A history and analysis. Tech. rep. Citeseer, 1998.

[71] Amandeep Verma and Sakshi Kaushal. “Deadline constraint heuristic-based genetic
algorithm for workflow scheduling in cloud”. In: International Journal of Grid and

Utility Computing 5.2 (2014), pp. 96–106.

[72] El Yamany et al. “OPTI-SELECT: an interactive tool for user-in-the-loop feature se-
lection in software product lines”. In: Proceedings of the 18th International Software

Product Line Conference: Companion Volume for Workshops, Demonstrations and

Tools-Volume 2. ACM. 2014, pp. 126–129.

[73] Jia Yu and Rajkumar Buyya. “Scheduling scientific workflow applications with dead-
line and budget constraints using genetic algorithms”. In: Scientific Programming

14.3-4 (2006), pp. 217–230.

[74] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. “Workflow scheduling algo-
rithms for grid computing”. In: Metaheuristics for scheduling in distributed computing

environments (2008), pp. 173–214.

[75] Shaobin Zhan and Hongying Huo. “Improved PSO-based task scheduling algorithm in
cloud computing”. In: Journal of Information & Computational Science 9.13 (2012),
pp. 3821–3829.

[76] Lei Zhang et al. “A task scheduling algorithm based on PSO for grid computing”. In:
International Journal of Computational Intelligence Research 4.1 (2008), pp. 37–43.

[77] Eckart Zitzler and Simon Künzli. “Indicator-based selection in multiobjective search”.
In: International Conference on Parallel Problem Solving from Nature. Springer. 2004,
pp. 832–842.

	Introduction
	Problem Statement
	Proposed Solution
	Impact of the proposed solution
	Research Questions
	Organization of this document

	Background and Related Work
	Cloud Computing
	Traditional Scheduling Algorithms
	Genetic Algorithm
	Selection
	Crossover operation
	Mutation operator

	Multi-Objective Optimization
	Search and Decision Making
	Quality Indicators

	Interactive Optimization
	 Exploration and Exploitation
	Multi-Objective Evolutionary Algorithms (MOEAs)
	 Multi-Objective Cellular genetic algorithm (MOCell)
	Indicator-Based Evolutionary Algorithm (IBEA)
	 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

	Related Work
	Cloud Workflow Optimization
	User-In-the-Loop Optimization
	Summary

	Proposed Cloud Task Scheduling Framework
	Proposed Cloud Task Scheduling Framework
	Integrating User-In-the-Loop (UIL)
	Existing Tools
	jMetal
	CloudSim
	WorkflowSim

	Experimental Setup
	Creating Tasks and Virtual Machines
	Solution Representation
	Stopping Condition
	Optimization Objectives
	Algorithm Settings
	DataSet of Study

	Results
	Comparing MOEAs with Traditional Algorithms
	Solving for 4 Maximum VMs
	Solving for 8 Maximum VMs
	Solving for 12 Maximum VMs
	Solving for 16 Maximum VMs
	Pareto Front plots

	User-In-the-Loop
	Discussion
	Limitations of the Study

	Conclusions and Future Work
	Appendix
	UIL Test Case

	Bibliography

